如圖,⊙O的直徑AB=4,C為圓周上一點(diǎn),AC=2,過(guò)點(diǎn)C作⊙O的切線l,過(guò)點(diǎn)B作l的垂線BD,垂足為D,BD與⊙O交于點(diǎn) E.

(1). (3分)求∠AEC的度數(shù);

 (2). (3分)求證:四邊形OBEC是菱形.

 

 

 

 

 

 

(1)解:在△AOC中,AC=2,

    ∵AO=OC=2,

∴ △AOC是等邊三角形.………………2分

∴ ∠AOC=60°,

∴∠AEC=30°………………3分

(2)證明:∵OC⊥l,BD⊥l.

∴ OC∥BD.

∴ ∠ABD=∠AOC=60°.

∵ AB為⊙O的直徑,

∴ △AEB為直角三角形,∠EAB=30°.

∴∠EAB=∠AEC.

∴ 四邊形OBEC 為平行四邊形.  ………………5分

又∵ OB=OC=2. 

∴ 四邊形OBEC是菱形.………………6分

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點(diǎn),過(guò)點(diǎn)B作BF∥CD交AD的延長(zhǎng)線于
點(diǎn)F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長(zhǎng).(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點(diǎn),連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長(zhǎng);
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點(diǎn),CD=6cm,則直徑AB的長(zhǎng)是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案