【題目】如圖,△ABC、△DCE、△HEF、是三個(gè)全等的等邊三角形,點(diǎn)BC、EF在同一條直線上,連接AF,與DC、DEHE分別相交于點(diǎn)P、MK,若△DPM的面積為2,則圖中三個(gè)陰影部分的面積之和為_____

【答案】26

【解析】

根據(jù)全等三角形對(duì)應(yīng)角相等,可以證明ACDEHF,再根據(jù)全等三角形對(duì)應(yīng)邊相等BC=CE=EF,然后利用平行線分線段成比例定理求出AB=3KE,PC=2KE,得出DMP≌△EMK,S△MEK=2MDE的中點(diǎn),再由相似三角形的性質(zhì)即可得出答案.

∵△ABC≌△DCE≌△HEF

∴∠ACB=∠DEC=∠HFE,BCCEEF

ACDEHF,

,

AB3KEPC2KE,

PDKE

∵∠D=∠MEK,∠DMP=∠EMK,

∴△DMP≌△EMK

SMEK2,MDE的中點(diǎn),

SEFK2SEMK4,

∵△EFK∽△CFP,相似比為12,

S四邊形PCEMSPCFSEFKSMEK164210

SABC10+212,

∴三個(gè)陰影部分面積=SABC+S四邊形PCBM+SEFK12+10+426

故答案為26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,ACBC,AB=8.點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿邊AB向點(diǎn)B運(yùn)動(dòng).過點(diǎn)PPDAB交折線ACCB于點(diǎn)D,以PD為邊在PD右側(cè)做正方形PDEF.設(shè)正方形PDEFABC重疊部分圖形的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0<t<4).

(1)當(dāng)點(diǎn)D在邊AC上時(shí),正方形PDEF的邊長為   (用含t的代數(shù)式表示).

(2)當(dāng)點(diǎn)E落在邊BC上時(shí),求t的值.

(3)當(dāng)點(diǎn)D在邊AC上時(shí),求St之間的函數(shù)關(guān)系式.

(4)作射線PE交邊BC于點(diǎn)G,連結(jié)DF.當(dāng)DF=4EG時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建書香校園活動(dòng)中,為了解學(xué)生的讀書情況,某校抽樣調(diào)查了部分同學(xué)在一周內(nèi)的閱讀時(shí)間,繪制如下統(tǒng)計(jì)圖.根據(jù)圖中信息,解答下列問題:

(1)被抽查學(xué)生閱讀時(shí)間的中位數(shù)為_______h,眾數(shù)為________h;平均數(shù)為________h:

(2)若該校共有800名學(xué)生,請(qǐng)你估算該校一周內(nèi)閱讀時(shí)間不少于3h的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,等腰RtOAB的一條直角邊OA x軸的正半軸上,點(diǎn)B在雙曲線上,且∠BAO=90°,.

(1)k的值及點(diǎn)A的坐標(biāo);

(2)△OAB沿直線OB平移,當(dāng)點(diǎn)A恰好在雙曲線上時(shí),求平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是圓O的直徑,ABAD是圓O的弦,且ABAD,連接BC、DC.

(1)求證:△ABC≌△ADC;

(2)延長AB、DC交于點(diǎn)E,若EC5 cm,BC3 cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)直角三角形的苗圃,由一個(gè)正方形花壇和兩塊直角三角形的草皮組成.如果兩個(gè)直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( 。┢椒矫祝

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年12月16﹣18日,第二屆互聯(lián)網(wǎng)大會(huì)在浙江烏鎮(zhèn)勝利舉行,這說明我國互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù).據(jù)市場調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);

(2)設(shè)每月獲得利潤為w(元),求每月獲得利潤w(元)關(guān)于銷售單價(jià)x(元)的函數(shù)解析式;

(3)由于市場競爭激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)Py=的圖象上,PC⊥x軸,交y=的圖象于點(diǎn)A,PD⊥y軸,交y=的圖象于點(diǎn)B.當(dāng)點(diǎn)Py=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①△ODB△OCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④當(dāng)點(diǎn)APC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).其中一定正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在O的直徑AB的延長線上,點(diǎn)C在O上,AC=CD,ACD=120°.

(1)求證:CD是O的切線;

(2)若O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案