【題目】如圖,已知:點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請(qǐng)給出證明;如果不能,請(qǐng)從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的三個(gè)條件(請(qǐng)從其中選擇一個(gè)):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于點(diǎn)O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說(shuō)明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了準(zhǔn)備“迎新活動(dòng)”,用700元購(gòu)買(mǎi)了甲、乙兩種小禮品260個(gè),其中購(gòu)買(mǎi)甲種禮品比乙種禮品少用了100元.
(1)購(gòu)買(mǎi)乙種禮品花了______元;
(2)如果甲種禮品的單價(jià)比乙種禮品的單價(jià)高20%,求乙種禮品的單價(jià).(列分式方程解應(yīng)用題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過(guò)程中,∠N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】保障房建設(shè)是民心工程,某市從2013年加快保障房建設(shè)工程. 現(xiàn)統(tǒng)計(jì)該市從2013年到2017年這5年新建保障房情況,繪制成如圖所示的折線統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖.
(1)小穎看了統(tǒng)計(jì)圖后說(shuō):“該市2016年新建保障房的套數(shù)比2015年少了.” 你認(rèn)為小穎的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由;
(2)求2016年新建保障房的套數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰直角△ABC,∠C=90°,點(diǎn)D是斜邊AB的中點(diǎn),E是AC上的動(dòng)點(diǎn)、∠EDF=90°,DF交BC 于點(diǎn)F.
(1)當(dāng) DE⊥AC,DF⊥BC 時(shí),(如圖1),我們很容易得出:S△DEF+S△CEF=S△ABC.
(2)如圖2,DE與 AC不垂直,且點(diǎn)E在線段AC上時(shí),(1)中的結(jié)論是否成立,如果不成立,請(qǐng)說(shuō)明理由;如果成立,請(qǐng)證明.
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到AC延長(zhǎng)線上,其他條件不變,請(qǐng)把圖3補(bǔ)充完整,直接寫(xiě)出 S△DEF,S△CEF,S△ABC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知一個(gè)多邊形的內(nèi)角和是它的外角和的 3 倍,求這個(gè)多邊形的邊數(shù).
(2)如圖,點(diǎn)F 是△ABC 的邊 BC 延長(zhǎng)線上一點(diǎn).DF⊥AB,∠A=30°,∠F=40°,求∠ACF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點(diǎn)F,∠AGF=130°,則∠F等于( )
A.9.5°
B.19°
C.15°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對(duì)稱軸,且斜邊上的點(diǎn)D為另一塊三角板DMN的直角頂點(diǎn),DM、DN分別交AB、AC于點(diǎn)E、F.則下列四個(gè)結(jié)論:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四邊形AEDF=BC2.其中正確結(jié)論是_____(填序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com