如圖,Rt△ABC中,∠C=90°,AC=2,BC=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為   
【答案】分析:觀察圖形發(fā)現(xiàn):陰影部分的面積=兩個半圓的面積-直角三角形的面積.根據(jù)勾股定理又知以直角三角形的兩條直角邊為直徑的半圓面積和等于以斜邊為直徑的半圓面積即2π.然后根據(jù)勾股定理求面積即可.
解答:解:圖中陰影部分的面積為兩個半圓的面積減去三角形的面積.
即陰影部分的面積=π×4+π×1-4×2÷2=π-4.所以陰影部分的面積是π-4.
點評:此題綜合運用了勾股定理以及一個結(jié)論:以直角三角形的兩條直角邊為直徑的半圓面積和等于以斜邊為直徑的半圓面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習(xí)冊答案