觀察下列各式:1×2×3×4+1=52=(12+3×1+1)2,
2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,
4×5×6×7+1=292=(42+3×4+1)2,
…
(1)根據(jù)你觀察、歸納、發(fā)現(xiàn)的規(guī)律,寫出8×9×10×11+1的結(jié)果;
(2)試猜想:n(n+1)(n+2)(n+3)+1是哪一個(gè)數(shù)的平方?并說明理由.
解:(1)觀察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出規(guī)律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2(n≥1),
8×9×10×11+1=(82+3×8+1)2=892;
(2)根據(jù)(1)得出的結(jié)論得出:
n(n+1)(n+2)(n+3)+1
=n(n+3)(n+1)(n+2)+1
=(n2+3n)(n2+3n+2)+1
=(n2+3n)2+2(n2+3n)+1
=(n2+3n+1)2.
分析:(1)觀察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,
3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出規(guī)律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2(n≥1),
所以8×9×10×11+1=(82+3×8+1)2=892;
(2)根據(jù)(1)得出的規(guī)律可得出結(jié)論.
點(diǎn)評:通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題是應(yīng)該具備的基本能力.本題的關(guān)鍵規(guī)律為n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n≥1).