二次函數(shù)的圖象如圖所示,試確定、的符號;             0,
             0.(填不等號)
< >

試題分析:由題意知,該二次函數(shù)開口向下,所以,即為-1,當x=0時,y=c在x軸的上半軸,所以,該二次函數(shù)的對稱軸是,故
點評:本題屬于對二次函數(shù)各個系數(shù)的符號的判定,在考查時要通過對坐標軸進行分析以及對對稱軸在各個點的知識進行判定
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經過點A(1,0),B(3,2).

(1)求m的值和拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標;
(3)若此拋物線與y軸交于點C,點P是x軸上的一個動點,當點P到C、B兩點的距離之和最小時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線軸于兩點,交軸于點,對稱軸為直線。且A、C兩點的坐標分別為,

(1)求拋物線的解析式;
(2)在對稱軸上是否存在一個點,使的周長最。舸嬖,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.

(1)點B的坐標為      ,點C的坐標為      (用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點P,使得△PAC是直角三角形?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)請你探索,在(1)的結論下,在第一象限內是否存在點Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=a(x-1)2+c與x軸交于點A(1-,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P'(1,3)處.

(1)求原拋物線的解析式;
(2)學校舉行班徽設計比賽,九年級5班的小明在解答此題時頓生靈感:過點P'作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比.請你計算這個“W”圖案的高與寬的比到底是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,E是正方形ABCD的邊AB上的動點, EF⊥DE交BC于點F.若正方形的邊長為4, AE=,BF=.則 的函數(shù)關系式為          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)求二次函數(shù)y=x2-4x+1圖象的頂點坐標,并指出當x在何范圍內取值時,y隨x的增大而減;
(2)若二次函數(shù)y=x2-4x+c的圖象與坐標軸有2個交點,求字母c應滿足的條件.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線向左平移8個單位,再向下平移9個單位后,所得拋物線關系式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠A=90°,BC=10,tan∠ABC=3:4,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N,以AM、AN為鄰邊作矩形AMPN,其對角線交點為G。直線MP、NP分別與邊BC相交于點E、F,設AP=x。

圖1                        圖2
(1)求AB、AC的長;
(2)如圖2,當點P落在BC上時,求x的值;
(3)當EF=5時,求x的值;
(4)在動點M的運動過程中,記△MNP與梯形BCNM重合部分的面積為y。試求y關于x的函數(shù)表達式,并求出y的最大值。

查看答案和解析>>

同步練習冊答案