【題目】如圖,在長方形ABCD中,AB=6,CB=8,點P與點Q分別是AB、CB邊上的動點,點P與點Q同時出發(fā),點P以每秒2個單位長度的速度從點A→點B運動,點Q以每秒1個單位長度的速度從點C→點B運動.當其中一個點到達終點時,另一個點隨之停止運動.(設運動時間為t秒)
(1)如果存在某一時刻恰好使QB=2PB,求出此時t的值;
(2)在(1)的條件下,求圖中陰影部分的面積(結果保留整數).
【答案】
(1)解:由題意可知AP=2t,CQ=t,
∴PB=AB﹣AP=6﹣2t,QB=CB﹣CQ=8﹣t.
當QB=2PB時,有8﹣t=2(6﹣2t).
解這個方程,得 .
所以當 秒時,QB=2PB
(2)解:當 時, ,
.
∴ .
∵S長方形ABCD=ABCB=6×8=48,
∴S陰影=S長方形ABCD﹣S△QPB≈37
【解析】(1)當t秒QB=2PB時,BP=6﹣2t,BQ=8﹣t,就有8﹣t=2(6﹣2t),求出結論就可以了;(2)由(1)求出t的值就可以求出BP、BQ的值,根據矩形的面積減去三角形BPQ的面積就可以求出結論.
【考點精析】利用兩點間的距離和三角形的面積對題目進行判斷即可得到答案,需要熟知同軸兩點求距離,大減小數就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記;三角形的面積=1/2×底×高.
科目:初中數學 來源: 題型:
【題目】下列命題是假命題的是( 。
A. 有一個外角是120°的等腰三角形是等邊三角形
B. 等邊三角形有3條對稱軸
C. 有兩邊和一角對應相等的兩個三角形全等
D. 有一邊對應相等的兩個等邊三角形全等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知O為AD上一點,∠AOC與∠AOB互補,OM,ON分別為∠AOC,∠AOB的平分線,若∠MON=40°,試求∠AOC與∠AOB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα=.下列結論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結論是______________.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙分別是4等分、3等分的兩個圓轉盤,指針固定,轉盤轉動停止后,指針指向某一數字.
(1)直接寫出轉動甲盤停止后指針指向數字“1”的概率;
(2)小華和小明利用這兩個轉盤做游戲,兩人分別同時轉動甲、乙兩個轉盤,停止后,指針各指向一個數字,若兩數字之積為非負數則小華勝;否則,小明勝.你認為這個游戲公平嗎?請你利用列舉法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的頂點坐標是A(﹣7,1),B(1,1),C(1,7).線段DE的端點坐標是D(7,﹣1),E(﹣1,﹣7).
(1)試說明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標原點O逆時針旋轉,使AC的對應邊為DE,請直接寫出點B的對應點F的坐標;
(3)畫出(2)中的△DEF,并和△ABC同時繞坐標原點O逆時針旋轉90°,畫出旋轉后的圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P,Q都是直線l外的點,下列說法正確的是( 。
A.連接PQ,則PQ一定與直線l垂直
B.連接PQ,則PQ一定與直線l平行
C.連接PQ,則PQ一定與直線l相交
D.過點P只能畫一條直線與直線l平行
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com