已知直角三角形的兩直角邊分別為5,12,則它的外接圓半徑R=  


6.5 解:∵直角三角形的兩條直角邊分別為5和12,

∴根據(jù)勾股定理知,該直角三角的斜邊長(zhǎng)為=13;

∴其外接圓半徑長(zhǎng)為6.5;


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖:則化簡(jiǎn)﹣|a+b|的結(jié)果是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC和△DEF中,B,E,C,F(xiàn)在同一條直線上,AB=DE,AC=DF,要使△ABC≌△DEF,還需要添加一個(gè)條件是(  )

  A. BE=CF B. BE=EC C. EC=CF D. AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某商店銷售A型和B型兩種型號(hào)的電腦,銷售一臺(tái)A型電腦可獲利120元,銷售一臺(tái)B型電腦可獲利140元.該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的3倍.設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.

(1)求y與x的關(guān)系式;

(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售利潤(rùn)最大?

(3)若限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),則這100臺(tái)電腦的銷售總利潤(rùn)能否為13600元?若能,請(qǐng)求出此時(shí)該商店購(gòu)進(jìn)A型電腦的臺(tái)數(shù);若不能,請(qǐng)求出這100臺(tái)電腦銷售總利潤(rùn)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,矩形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA在x軸上,邊OC在y軸上.若矩形OA1B1C1與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA1B1C1的面積等于矩形OABC面積的,則點(diǎn)B1的坐標(biāo)是( 。

  A. (3,2) B. (﹣2,﹣3) C. (2,3)或(﹣2,﹣3) D. (3,2)或(﹣3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,A、B、C、D依次為一直線上4個(gè)點(diǎn),BC=2,△BCE為等邊三角形,⊙O過(guò)A、D、E3點(diǎn),且∠AOD=120°.設(shè)AB=x,CD=y,則y與x的函數(shù)關(guān)系式為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,矩形ABCD中,AB=6,BC=8,動(dòng)點(diǎn)P以每秒2個(gè)單位的速度從B點(diǎn)出發(fā)沿著BC向C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)C出發(fā)沿CD向D移動(dòng).

(1)幾秒時(shí),△PCQ的面積為3?

(2)幾秒時(shí),由C、P、Q三點(diǎn)組成的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,則梯形ABCD的周長(zhǎng)是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 A. a是正數(shù) B. a是負(fù)數(shù) C. a是零 D. a是正數(shù)或零

查看答案和解析>>

同步練習(xí)冊(cè)答案