14.下列計算正確的是( 。
A.a6÷a2=a3B.a•a=2aC.(a43=a12D.a2+a2=2a4

分析 根據(jù)整式的乘除運算即可判斷.

解答 解:(A)原式=a6-2=a4,故A錯誤;
(B)原式=a1+1=a2,故B錯誤;
(D)原式=2a2,故D錯誤;
故選(C);

點評 本題考查整式的乘除,屬于基礎(chǔ)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.某種藥品原價為49元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是(  )
A.49(1-x)2=49-25B.49(1-2x)=25C.49(1-x)2=25D.49(1-x2)=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在?ABCD中,對角線AC、BD相交于O,EF過點O,且AF⊥BC.
(1)求證:△BFO≌△DEO;
(2)若EF平分∠AEC,試判斷四邊形AFCE的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖1,在三角形紙片ABC中,∠A=78°,AB=4,AC=6.將△ABC沿圖示中的虛線剪開,剪下的陰影三角形與原三角形相似的有(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知AB∥CD,AD、BC相交于點E,點F在ED上,且∠CBF=∠D.
(1)求證:FB2=FE•FA;
(2)若BF=3,EF=2,求△ABE與△BEF的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列式子正確的是(  )
A.-2.1>-2.01B.-2>0C.$\frac{1}{3}$<$\frac{1}{4}$D.-15<13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.(1)計算:(x2y-$\frac{1}{2}$xy2-xy)÷$\frac{1}{2}$xy.
(2)若10m=3,10n=2,求102m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當(dāng)∠APD=90°時,易證△ABP∽△PCD,從而得到BP•PC=AB•CD(不需證明)

探究:如圖②,在四邊形ABCD中,點P在BC邊上,當(dāng)∠B=∠C=∠APD時,結(jié)論BP•PC=AB•CD仍成立嗎?請說明理由?
拓展:如圖③,在△ABC中,點P是BC的中點,點D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=4$\sqrt{2}$,CE=3,則DE的長為$\frac{5}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知點A的坐標(biāo)為(0,-1),點C(m,0)是x軸上的一個動點.
(1)如圖1,點B在第四象限,△AOB和△BCD都是等邊三角形,點D在BC的上方,當(dāng)點C在x軸上運動到如圖所示的位置時,連接AD,請證明△ABD≌△OBC;
(2)如圖2,點B在x軸的正半軸上,△ABO和△ACD都是等腰直角三角形,點D在AC的上方,∠D=90°,當(dāng)點C在x軸上運動(m>1)時,設(shè)點D的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達式;
(3)如圖3,四邊形ACEF是菱形,且∠ACE=90°,點E在AC的上方,當(dāng)點C在x軸上運動(m>1)時,設(shè)點E的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達式.

查看答案和解析>>

同步練習(xí)冊答案