【題目】已知關(guān)于x的一元二次方程總有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若此方程的兩根均為正整數(shù),求正整數(shù)m的值.
【答案】(1)當(dāng)m≠0和3時(shí),原方程有兩個(gè)不相等的實(shí)數(shù)根;(2)可取的正整數(shù)m的值分別為1.
【解析】
(1)利用一元二次方程的定義和判別式的意義得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,從而可得到m的范圍;
(2)利用求根公式解方程得到x1=1,x2=,利用此方程的兩根均為正整數(shù)得到m=1或m=3,然后利用(1)的范圍可確定m的值.
解:(1)由題意得:m≠0且>0,
∴當(dāng)m≠0和3時(shí),原方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)∵此方程的兩根均為正整數(shù),即,
解方程得,.
∴可取的正整數(shù)m的值分別為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣a2關(guān)于y軸對(duì)稱且有最小值﹣1.
(1)求拋物線C1的解析式;
(2)在圖1中拋物線C1頂點(diǎn)為A,將拋物線C1繞 點(diǎn)B旋轉(zhuǎn)180°后得到拋物線C2,直線y=kx﹣2k+4總經(jīng)過(guò)一定點(diǎn)M,若過(guò)定點(diǎn)M的直線與拋物線C2只有一個(gè)公共點(diǎn),求直線l的解析式.
(3)如圖2,先將拋物線 C1向上平移使其頂點(diǎn)在原點(diǎn)O,再將其頂點(diǎn)沿直線y=x平移得到拋物線C3,設(shè)拋物線C3與直線y=x交于C、D兩點(diǎn),求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對(duì)教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請(qǐng)你根據(jù)題中提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開(kāi)始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的一個(gè)內(nèi)角∠BAD=80°,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E在AB上,且BE=BO,則∠EOA=___________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校修建運(yùn)動(dòng)場(chǎng),讓甲工程隊(duì)單獨(dú)做需要15天完成,讓乙工程隊(duì)單獨(dú)做需要10天完成.
(1)如果讓甲、乙工程隊(duì)合做3天后,剩下的工程由乙工程隊(duì)完成,還需要多少天?
(2)已知甲隊(duì)每天的費(fèi)用為1000元,乙隊(duì)每天的費(fèi)用為1600 元,從節(jié)約資金的角度,認(rèn)為是甲、乙隊(duì)單獨(dú)做,還是兩隊(duì)合做完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是直線上的一點(diǎn),將一直角三角板如圖擺放,過(guò)點(diǎn)作射線平分.
(1)如圖1,如果,依題意補(bǔ)全圖形,求度數(shù);
(2)當(dāng)直角三角板繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊在直線的上方,若,其他條件不變,請(qǐng)你直接用含的代數(shù)式表示的度數(shù)為 ;
(3)當(dāng)直角三角板繞點(diǎn)繼續(xù)順時(shí)針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過(guò)程中你發(fā)現(xiàn)與之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的發(fā)現(xiàn): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)有甲種原料263千克,乙種原料314千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共100件.生產(chǎn)一件產(chǎn)品所需要的原料及生產(chǎn)成本如下表所示:
甲種原料(單位:千克) | 乙種原料(單位:千克) | 生產(chǎn)成本(單位:元) | |
A產(chǎn)品 | 3 | 2 | 120 |
B產(chǎn)品 | 2.5 | 3.5 | 200 |
(1)該工廠現(xiàn)有的原料能否保證生產(chǎn)需要?若能,有幾種生產(chǎn)方案?請(qǐng)你設(shè)計(jì)出來(lái).
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品的總成本為y元,其中生產(chǎn)A產(chǎn)品x件,試寫(xiě)出y與x之間的函數(shù)關(guān)系,并利用函數(shù)的性質(zhì)說(shuō)明(1)中哪種生產(chǎn)方案總成本最低?最低生產(chǎn)總成本是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解甲、乙兩家快遞公司比較合適,甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi),乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)當(dāng)x>1時(shí),請(qǐng)分別直接寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,小明選擇哪家快遞公司更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B,C在數(shù)軸上表示數(shù)a,b,c,滿足(b+2)2+(c﹣24)2=0,多項(xiàng)式x|a+3|y2﹣ax3y+xy2﹣1是關(guān)于字母x,y的五次多項(xiàng)式.
(1)a的值________,b的值________,c的值________.
(2)已知螞蟻從A點(diǎn)出發(fā),途徑B,C兩點(diǎn),以每秒3cm的速度爬行,需要多長(zhǎng)時(shí)間到達(dá)終點(diǎn)C?
(3)求值:a2b﹣bc.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com