已知:如圖,△ABD∽△DBC,BD=3,BC=2,則AB的長(zhǎng)為
9
2
9
2
分析:根據(jù)相似三角形對(duì)應(yīng)邊的比相等即可求解.
解答:解:∵△ABD∽△DBC,
AB
DB
=
BD
BC
,
∵BD=3,BC=2,
AB
3
=
3
2
,
∴AB=
9
2

故答案為
9
2
點(diǎn)評(píng):本題考查對(duì)相似三角形性質(zhì)的理解.用到的知識(shí)點(diǎn):相似三角形對(duì)應(yīng)邊的比相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,△ABD≌△EBC,且∠1=∠2,AB=BE,則AD=
EC
,∠C=
∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,∠ABD=∠DBC,∠ACD=∠DCE.
(1)若∠A=50°,求∠D的度數(shù);
(2)猜想∠D與∠A的關(guān)系,并說明理由;
(3)若CD∥AB,判斷∠ABC與∠A的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、已知:如圖,△ABD≌△FEC,D與C的對(duì)應(yīng)頂點(diǎn).
(1)△FEC可以看作是由△ABD通過怎樣的旋轉(zhuǎn)變換得到的?
(2)BD與EC的位置關(guān)系是什么,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖Rt△ABD和Rt△BCD如圖放置,∠BAD=∠BCD=90°,連接AC,若AC平分∠DAB,則線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案