如果將點P繞定點M旋轉(zhuǎn)180°后與點Q重合,那么稱點P與點Q關(guān)于點M對稱,定點M叫做對稱中心.此時,點M是線段PQ的中點.在平面直角坐標(biāo)系中,△ABO的頂點A,B,O的坐標(biāo)分別為(1,0)、(0,1)、(0,0).點列P1、P2、P3、…,中的相鄰兩點都關(guān)于△ABO的一個頂點對稱:點P1與點P2關(guān)于點A對稱,點P2與點P3關(guān)于點B對稱,點P3與點P4關(guān)于點O對稱,點P4與點P5關(guān)于點A對稱,點P5與點P6關(guān)于點B對稱,點P6與點P7關(guān)于點O對稱,…,對稱中心分別是A,B,O,A,B,O,…,且這些對稱中心依次循環(huán).已知點P1的坐標(biāo)是(1,1),則點P2012的坐標(biāo)為( )

A.(1,1)
B.(-1,3)
C.(1,-1)
D.(1,3)
【答案】分析:根據(jù)中心對稱及平面直角坐標(biāo)系中的有關(guān)知識,可以求得點P1關(guān)于點A的對稱點坐標(biāo),以及點P2關(guān)于點B的對稱點坐標(biāo),點P3關(guān)于點O的對稱點P4,進而得出可以看出,點P7的坐標(biāo)和點P1的坐標(biāo)相同,以后依此對應(yīng)相等,點P的坐標(biāo)每6個一循環(huán),2012包含335個6,余數(shù)是2,所以得出第2012個點P的坐標(biāo).
解答:解:∵點P1(1,1)關(guān)于點A的對稱點是P2(1,-1),
點P2關(guān)于點B的對稱點是P3(-1,3),點P3關(guān)于點O的對稱點P4(1,-3),
點P4關(guān)于點A的對稱點P5(1,3),點P5關(guān)于點B的對稱點是P6(-1,-1),
點P6關(guān)于點O的對稱點是P7(1,1),
可以看出,點P7的坐標(biāo)和點P1的坐標(biāo)相同,
以后依此對應(yīng)相等,點P的坐標(biāo)每6個一循環(huán),
2012包含335個6,余數(shù)是2,
所以第2012個點P的坐標(biāo)和第2個點P的坐標(biāo)相同是(1,-1).
故選:C.
點評:此題主要考查了平面直角坐標(biāo)系中中心對稱的性質(zhì),以及找規(guī)律問題,根據(jù)已知得出點P的坐標(biāo)每6個一循環(huán)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•海淀區(qū)二模)閱讀下面材料:
小明遇到這樣一個問題:
我們定義:如果一個圖形繞著某定點旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.

小明利用旋轉(zhuǎn)解決了這個問題,圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.
請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫出一個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的面積為a,則圖3中△FGH的面積為
a
7
a
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•宜興市二模)閱讀下面材料:
小明同學(xué)遇到這樣一個問題:定義:如果一個圖形繞著某定點旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.小明利用旋轉(zhuǎn)解決了這個問題(如圖2所示).圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P 1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫-個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的邊長為6,則圖3中△ABM1的面積為
3
3
3
3

(3)若△ABC的面積為a,則圖3中△FGH的面積為
a
7
a
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省無錫市南長區(qū)宜興市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀下面材料:
小明同學(xué)遇到這樣一個問題:定義:如果一個圖形繞著某定點旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.小明利用旋轉(zhuǎn)解決了這個問題(如圖2所示).圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P 1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫-個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的邊長為6,則圖3中△ABM1的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:
我們定義:如果一個圖形繞著某定點旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.

小明利用旋轉(zhuǎn)解決了這個問題,圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.
請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫出一個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的面積為a,則圖3中△FGH的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京市海淀區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:
我們定義:如果一個圖形繞著某定點旋轉(zhuǎn)一定的角度α (0°<α<360°) 后所得的圖形與原圖形重合,則稱此圖形是旋轉(zhuǎn)對稱圖形.如等邊三角形就是一個旋轉(zhuǎn)角為120°的旋轉(zhuǎn)對稱圖形.如圖1,點O是等邊三角形△ABC的中心,D、E、F分別為AB、BC、CA的中點,請你將△ABC分割并拼補成一個與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.

小明利用旋轉(zhuǎn)解決了這個問題,圖2中陰影部分所示的圖形即是與△ABC面積相等的新的旋轉(zhuǎn)對稱圖形.
請你參考小明同學(xué)解決問題的方法,利用圖形變換解決下列問題:
如圖3,在等邊△ABC中,E1、E2、E3分別為AB、BC、CA 的中點,P1、P2,M1、M2,N1、N2分別為AB、BC、CA的三等分點.
(1)在圖3中畫出一個和△ABC面積相等的新的旋轉(zhuǎn)對稱圖形,并用陰影表示(保留畫圖痕跡);
(2)若△ABC的面積為a,則圖3中△FGH的面積為______.

查看答案和解析>>

同步練習(xí)冊答案