如圖,在△ABC中,∠C=90°,AC=3,BC=4.O為BC邊上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與BC邊和AB邊分別交于點(diǎn)D、點(diǎn)E,連接DE.
(1)過點(diǎn)E作直線EF交AC邊于點(diǎn)F,當(dāng)EF=AF時(shí),求證:直線EF為半圓O的切線;
(2)當(dāng)BD=3時(shí),求線段DE的長(zhǎng).
【答案】分析:(1)連接OE.根據(jù)切線的判定定理,需證EF⊥OE;
(2)易證△ABC∽△DBE,得比例線段求解.
解答:(本小題滿分5分)
證明:(1)連接OE.
∵EF=AF,
∴∠A=∠AEF.
∵OE=OB,
∴∠OEB=∠OBE.
∵∠C=90°,
∴∠A+∠B=90°.
∴∠AEF+∠OEB=90°.
∴∠FEO=90°.
∵OE是⊙O半徑,
∴EF是⊙O的切線.

解:(2)∵∠C=90°,BC=4,AC=3,
∴AB=5.
∵BD是直徑,
∴∠DEB=90°.
∴∠DEB=∠C.
∵∠B=∠B,
∴△BED∽△BCA.
,
,DE=
點(diǎn)評(píng):證明經(jīng)過圓上一點(diǎn)的直線是圓的切線,常作輔助線是連接圓心和該點(diǎn),證明直線和該半徑垂直.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案