如圖,四邊形ABCD的四個(gè)頂點(diǎn)都在⊙O上,BA、CD的延長(zhǎng)線相交于點(diǎn)P,AC、BD相交于點(diǎn)E,圖中相似三角形共有( )

A.5對(duì)
B.4對(duì)
C.3對(duì)
D.2對(duì)
【答案】分析:通過(guò)同弧所對(duì)的圓周角相等及割線定理,即可找出全部的相似的三角形.
解答:解:根據(jù)題意及圖形所示:PA•PB=PD•PC,∠P為公共角,可得△PDA∽△PBC,
又∠ADB=∠BCA,且∠DEA=∠BEC,可得△EDA∽△ECB,
同理可得△EAB∽△EDC,△PAC∽△PDB;
所以共有4對(duì)相似三角形,故選B.
點(diǎn)評(píng):本題考查相似三角形的判定定理,而且還考查了割線定理和同弧所對(duì)的圓周角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案