精英家教網 > 初中數學 > 題目詳情
(2007•河池)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.
(1)點______(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數關系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

【答案】分析:(1)(BC÷點N的運動速度)與(OA÷點M的運動速度)可知點M能到達終點.
(2)經過t秒時可得NB=y,OM-2t.根據∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數關系式后根據t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
解答:解:(1)點M.(1分)

(2)經過t秒時,NB=t,OM=2t,
則CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,(2分)
∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分)
∴S=-t2+t+2=-t2+t-++2=-(t-2+,(5分)
∵0≤t<2
∴當時,S的值最大.(6分)

(3)存在.(7分)
設經過t秒時,NB=t,OM=2t
則CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°(8分)
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高
∴PQ是底邊MA的中線
∴PQ=AP=MA
∴1+t=(4-2t)
∴t=
∴點M的坐標為(1,0)(10分)
②若∠QMA=90°,此時QM與QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴點M的坐標為(2,0).(12分)
點評:本題考查的是二次函數的有關知識,考生還需注意的是要學會全面分析問題的可行性繼而解答.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發(fā),以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省湛江市初中畢業(yè)生學業(yè)水平綜合測試數學試卷(五)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發(fā),以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年廣西河池市中考數學試卷(大綱卷)(解析版) 題型:解答題

(2007•河池)如圖,已知拋物線y=-x2+x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發(fā),以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2007•河池)如圖,直線a,b被直線c所截,且a∥b,如果∠1=65°,那么∠2=    度.

查看答案和解析>>

科目:初中數學 來源:2007年廣西河池市中考數學試卷(課標卷)(解析版) 題型:填空題

(2007•河池)如圖,直線a,b被直線c所截,且a∥b,如果∠1=65°,那么∠2=    度.

查看答案和解析>>

同步練習冊答案