如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)兩點(diǎn).
(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對應(yīng)).
解:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)
∴將A與B兩點(diǎn)坐標(biāo)代入得:,解得:。
∴拋物線的解析式是y=x2﹣3x。
(2)設(shè)直線OB的解析式為y=k1x,由點(diǎn)B(4,4),得:4=4k1,解得:k1=1。
∴直線OB的解析式為y=x。
∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m。
∵點(diǎn)D在拋物線y=x2﹣3x上,∴可設(shè)D(x,x2﹣3x)。
又∵點(diǎn)D在直線y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0。
∵拋物線與直線只有一個公共點(diǎn),∴△=16﹣4m=0,解得:m=4。
此時x1=x2=2,y=x2﹣3x=﹣2。
∴D點(diǎn)的坐標(biāo)為(2,﹣2)。
(3)∵直線OB的解析式為y=x,且A(3,0),∴點(diǎn)A關(guān)于直線OB的對稱點(diǎn)A′的坐標(biāo)是(0,3)。
根據(jù)軸對稱性質(zhì)和三線合一性質(zhì)得出∠A′BO=∠ABO,
設(shè)直線A′B的解析式為y=k2x+3,過點(diǎn)(4,4),∴4k2+3=4,解得:k2=。
∴直線A′B的解析式是y=。
∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點(diǎn)N在直線A′B上。
∴設(shè)點(diǎn)N(n,),
又∵點(diǎn)N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=,n2=4(不合題意,舍去)。
∴N點(diǎn)的坐標(biāo)為()。
如圖,將△NOB沿x軸翻折,得到△N1OB1,
則N1(),B1(4,﹣4)。
∴O、D、B1都在直線y=﹣x上。
由勾股定理,得OD=,OB1=,
∵△P1OD∽△NOB,△NOB≌△N1OB1,
∴△P1OD∽△N1OB1。
∴。
∴點(diǎn)P1的坐標(biāo)為()。
將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點(diǎn)P2()。
綜上所述,點(diǎn)P的坐標(biāo)是()或()。
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于的一元二次方程有實(shí)數(shù)根,為正整數(shù).
(1)求的值;
(2)當(dāng)此方程有兩個非零的整數(shù)根時,將關(guān)于的二次函數(shù)的圖象向下平移8個單位,求平移后的圖象的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與直線交于點(diǎn)O(0,0),。點(diǎn)B是拋物線上O,A之間的一個動點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線OA交于點(diǎn)C,E。
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長;
(3)以BC,BE為邊構(gòu)造條形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求m,n之間的關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠C=90°,BC=3,AB=5.點(diǎn)P從點(diǎn)B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個單位沿C→A→B方向的運(yùn)動,到達(dá)點(diǎn)B后立即原速返回,若P、Q兩點(diǎn)同時運(yùn)動,相遇后同時停止,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)t= 時,點(diǎn)P與點(diǎn)Q相遇;
(2)在點(diǎn)P從點(diǎn)B到點(diǎn)C的運(yùn)動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點(diǎn)Q從點(diǎn)B返回點(diǎn)A的運(yùn)動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點(diǎn)P作直線交AB于點(diǎn)D,將△ABC中沿直線PD折疊,使點(diǎn)A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為( , );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為( , );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是 ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時,求點(diǎn)B的坐標(biāo);
(2)求DE的長?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點(diǎn)為P,當(dāng)m為何值時,以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+b與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1).
(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com