(本題10分)如圖,直線與x軸,y軸分別交于B,C兩點,拋物線經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點。
(1)求B、C兩點坐標;
(2)求此拋物線的函數(shù)解析式;
(3)在拋物線上是否存在點P,使,若存在,求出P點坐標,若不存在,請說明理由。
(1)B(3,0) C(0,3) (2) (3)存在P1(2,3) P2(,-3) P3(,-3)
【解析】
試題分析:(1)因為B,C分別在x軸和y軸上,令x=0,則y=3,令y=0,則x=3,
故C(0,3)、B(3,0)
(2)把B、C兩點坐標代入拋物線得c=3,-9+3b+3=0
解出:c=3,b=2
故拋物線的解析式為:
(3) 因為點A在拋物線上,又在x軸負半軸,所以求得點A坐標(-1,0)
所以AB=4
得出
此時P點的縱坐標須為3或-3
P點在拋物線上,則:或
由解得x=0(此時不存在三角形,舍去)或x=2,此時,P坐標為P1(2,3)
由解得x=或x=,此時P坐標為P2(,-3) ,P3(,-3)
綜上所述,存在點P,使,坐標分別為P1(2,3), P2(,-3) ,P3(,-3)
考點:二次函數(shù)綜合題
點評:難度系數(shù)較大,中考常見題目,考查一次函數(shù)及二次函數(shù)圖象上點的坐標特征,二次函數(shù)解析式的確定以及圖形面積的求法,注意點P存在不同情況,須要考生分類討論。
科目:初中數(shù)學 來源: 題型:
(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.
1.(1)求點P的坐標.
2.(2)求△APB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設(shè)點P的坐標為(,).
(1)求當為何值時,⊙P與直線相切,并求點P的坐標.
(2)直接寫出當為何值時,⊙P與直線相交、相離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題10分)如圖,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=- x- 與⊙M相切于點H,交x軸于點E,交y軸于點F.
1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)
2.(2)如圖1,弦HQ交x軸于點P,且DP:PH=3:2,求COS∠QHC的值;(3分)
3.(3)如圖2,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年湖北武夷山市九年級上學期期末考試數(shù)學卷.doc 題型:解答題
(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源:2010年北京師大附中初一第一學期期末考試數(shù)學卷 題型:解答題
(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1) (2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com