16、如圖,用4個(gè)相同的直角三角形與一個(gè)小正方形拼成的大正方形,若圖中直角三角形較短的直角邊長(zhǎng)是5cm,小正方形的邊長(zhǎng)是7cm,則大正方形的邊長(zhǎng)是
13
cm.
分析:觀察圖形可得直角三角形的較短的直角邊加上小正方形的邊長(zhǎng)剛好等于直角三角形的較長(zhǎng)直角邊的長(zhǎng),根據(jù)勾股定理即可求得直角三角形斜邊的長(zhǎng),從而得到了大正方形的邊長(zhǎng).
解答:解:∵直角三角形較短的直角邊長(zhǎng)是5cm,小正方形的邊長(zhǎng)是7cm,
∴直角三角形的較長(zhǎng)直角邊=5+7=12cm,
∴直角三角形斜邊長(zhǎng)=13cm,
∴大正方形的邊長(zhǎng)是13cm.
點(diǎn)評(píng):此題主要考查學(xué)生勾股定理的運(yùn)用能力及觀察圖形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

數(shù)學(xué)家們通過(guò)長(zhǎng)期的研究,得到了關(guān)于“等周問(wèn)題”的重要結(jié)論:在周長(zhǎng)相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問(wèn)題”雖然較為繁雜,但其根本思想基于下面2個(gè)事實(shí):
事實(shí)1:等周長(zhǎng)n邊形的面積,當(dāng)圖形為正n邊形時(shí),其面積最大;
事實(shí)2:等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.
為了理解這些事實(shí)的合理性,曙光數(shù)學(xué)小組走出校門(mén)展開(kāi)了下列課題研究.請(qǐng)你幫助他們解決其中的一些問(wèn)題.
現(xiàn)有長(zhǎng)度為100m的籬笆(可彎曲圍成一個(gè)區(qū)域).
(1)如果用籬笆圍成一個(gè)長(zhǎng)方形雞場(chǎng),怎樣圍才能使雞場(chǎng)的面積最大?為什么?
(2)如果用籬笆圍成一個(gè)正五邊形雞場(chǎng),那么與(1)中的正方形雞場(chǎng)比較,哪個(gè)面積更大?請(qǐng)?jiān)谑聦?shí)1的基礎(chǔ)上證明事實(shí)2:“等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.”
(3)利用事實(shí)1和事實(shí)2,請(qǐng)對(duì)“等周問(wèn)題”的重要結(jié)論作出較為合理的解釋.
(4)愛(ài)動(dòng)腦筋的小明提出一個(gè)問(wèn)題:如果借用一條充分長(zhǎng)的直墻,將籬笆圍成一個(gè)四邊形雞場(chǎng),為了使雞場(chǎng)的面積盡量大,所圍成的長(zhǎng)方形雞場(chǎng)的長(zhǎng)是寬的2倍(如圖).你覺(jué)得他講的是否有道理?你有沒(méi)有更好的方法,使圍成的四邊形雞場(chǎng)的面積更大?如果有,請(qǐng)說(shuō)明你的方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)學(xué)家們通過(guò)長(zhǎng)期的研究,得到了關(guān)于“等周問(wèn)題”的重要結(jié)論:在周長(zhǎng)相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問(wèn)題”雖然較為繁雜,但其根本思想基于下面2個(gè)事實(shí):
事實(shí)1:等周長(zhǎng)n邊形的面積,當(dāng)圖形為正n邊形時(shí),其面積最大;
事實(shí)2:等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.
為了理解這些事實(shí)的合理性,曙光數(shù)學(xué)小組走出校門(mén)展開(kāi)了下列課題研究.請(qǐng)你幫助他們解決其中的一些問(wèn)題.
現(xiàn)有長(zhǎng)度為100m的籬笆(可彎曲圍成一個(gè)區(qū)域).
(1)如果用籬笆圍成一個(gè)長(zhǎng)方形雞場(chǎng),怎樣圍才能使雞場(chǎng)的面積最大?為什么?
(2)如果用籬笆圍成一個(gè)正五邊形雞場(chǎng),那么與(1)中的正方形雞場(chǎng)比較,哪個(gè)面積更大?請(qǐng)?jiān)谑聦?shí)1的基礎(chǔ)上證明事實(shí)2:“等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.”
(3)利用事實(shí)1和事實(shí)2,請(qǐng)對(duì)“等周問(wèn)題”的重要結(jié)論作出較為合理的解釋.
(4)愛(ài)動(dòng)腦筋的小明提出一個(gè)問(wèn)題:如果借用一條充分長(zhǎng)的直墻,將籬笆圍成一個(gè)四邊形雞場(chǎng),為了使雞場(chǎng)的面積盡量大,所圍成的長(zhǎng)方形雞場(chǎng)的長(zhǎng)是寬的2倍(如圖).你覺(jué)得他講的是否有道理?你有沒(méi)有更好的方法,使圍成的四邊形雞場(chǎng)的面積更大?如果有,請(qǐng)說(shuō)明你的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年九年級(jí)(上)數(shù)學(xué)月考試卷(二)(英才班)(解析版) 題型:解答題

數(shù)學(xué)家們通過(guò)長(zhǎng)期的研究,得到了關(guān)于“等周問(wèn)題”的重要結(jié)論:在周長(zhǎng)相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問(wèn)題”雖然較為繁雜,但其根本思想基于下面2個(gè)事實(shí):
事實(shí)1:等周長(zhǎng)n邊形的面積,當(dāng)圖形為正n邊形時(shí),其面積最大;
事實(shí)2:等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.
為了理解這些事實(shí)的合理性,曙光數(shù)學(xué)小組走出校門(mén)展開(kāi)了下列課題研究.請(qǐng)你幫助他們解決其中的一些問(wèn)題.
現(xiàn)有長(zhǎng)度為100m的籬笆(可彎曲圍成一個(gè)區(qū)域).
(1)如果用籬笆圍成一個(gè)長(zhǎng)方形雞場(chǎng),怎樣圍才能使雞場(chǎng)的面積最大?為什么?
(2)如果用籬笆圍成一個(gè)正五邊形雞場(chǎng),那么與(1)中的正方形雞場(chǎng)比較,哪個(gè)面積更大?請(qǐng)?jiān)谑聦?shí)1的基礎(chǔ)上證明事實(shí)2:“等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.”
(3)利用事實(shí)1和事實(shí)2,請(qǐng)對(duì)“等周問(wèn)題”的重要結(jié)論作出較為合理的解釋.
(4)愛(ài)動(dòng)腦筋的小明提出一個(gè)問(wèn)題:如果借用一條充分長(zhǎng)的直墻,將籬笆圍成一個(gè)四邊形雞場(chǎng),為了使雞場(chǎng)的面積盡量大,所圍成的長(zhǎng)方形雞場(chǎng)的長(zhǎng)是寬的2倍(如圖).你覺(jué)得他講的是否有道理?你有沒(méi)有更好的方法,使圍成的四邊形雞場(chǎng)的面積更大?如果有,請(qǐng)說(shuō)明你的方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案