【題目】某區(qū)選取了10名同學參加興隆臺區(qū)“漢字聽取大賽”,他們的年齡(單位:歲)記錄如下:
年齡(單位:歲) | 13 | 14 | 15 | 16 | 17 |
人數(shù) | 2 | 2 | 3 | 2 | 1 |
這些同學年齡的眾數(shù)和中位數(shù)分別是( )
A.15,15B.15,16C.3,3D.3,15
【答案】A
【解析】
根據(jù)眾數(shù)的定義和中位數(shù)的定義求解即可,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).
解:根據(jù)10名學生年齡人數(shù)最多的即為眾數(shù):15,
根據(jù)10名學生,第5,6名學生年齡的平均數(shù)即為中位數(shù)為:=15,故選A.
科目:初中數(shù)學 來源: 題型:
【題目】某商店欲購進A、B兩種商品,若購進A種商品5件,B種商品3件,共需450元;若購進A種商品10件,B種商品8件,共需1000元.
(1)購進A、B兩種商品每件各需多少元?
(2)該商店購進足夠多的A、B兩種商品,在銷售中發(fā)現(xiàn),A種商品售價為每件80元,每天可銷售100件,現(xiàn)在決定對A種商品在每件80元的基礎上降價銷售,每件每降價1元,多售出20件,該商店對A種商品降價銷售后每天銷量超過200件;B種商品銷售狀況良好,每天可獲利7000元,為使銷售A、B兩種商品每天總獲利為10000元,A種商品每件降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由個完全相同的小正方體搭成的物體如圖所示.
(1)請在下面的方格圖中畫出該物體的主視圖和左視圖;
(2)如果再添加若干個相同的小正方體之后,所得到的新物體的主視圖和左視圖跟原來的相間,那么這樣的小正方體最多還可以添加 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH是什么四邊形?證明你的結論.
(2)當四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;
(3)你學過的哪種特殊四邊形的中點四邊形是矩形? . (填一種即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是直角三角形,其中.
(1)畫出繞點順時針方向旋轉后的;
(2)線段在旋轉過程中所掃過部分的周長是_________(保留);
(3)求線段在旋轉過程中所掃過部分的面積(結果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費.年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔.某戶應交天然氣費y(元)與年用天然氣量x(立方米)的關系如圖所示,觀察圖像并回答下列問題:
(1)年用天然氣量不超過310立方米時,求y關于x的函數(shù)解析式(不寫定義域);
(2)小明家2017年天然氣費為1029元,求小明家2017年使用天然氣量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知在△ABC中,AB=AC,tanB=,BC =4,點E是在線段BA延長線上一點,以點E為圓心,EC為半徑的圓交射線BC于點C、F(點C、F不重合),射線EF與射線AC交于點P.
(1)求證:AE2=AP·AC;
(2)當點F在線段BC上,設CF=x,△PFC的面積為y,求y關于x的函數(shù)解析式及定義域;
(3)當 時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F是對角線BD上兩點,DE=BF.
(1)判斷四邊形AECF是什么特殊四邊形,并證明;
(2)若EF=4,DE=BF=2,求四邊形AECF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com