【題目】(1)如圖,正方形ABCD中,∠PCG45°,且PDBG,求證:FPFC.

(2)如圖,正方形ABCD中,∠PCG45°,延長PGCB的延長線于點F(1)中的結(jié)論還成立嗎?請說明理由.

(3)(2)的條件下,作FEPC,垂足為E,交CG于點N,連接DN,求∠NDC的度數(shù).

【答案】(1)見解析; (2)成立,理由見解析;(3)NDC45°.

【解析】

1)根據(jù)已知條件易證△BCG≌△DCP,由全等三角形的性質(zhì)可得CP=CG,∠BCG=DCP,即可求得∠DCP=BCG=22.5°,所以∠PCF=PCG+BCG=67.5°;在△PCG中,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理求得∠CPG=67.5°,即可得∠CPG =PCF,由此證得PF=CF;(2)過點CCHCGAD的延長線于H,先證得△BCG≌△DCH,可得CG=CH,再證得∠PCH=45°=PCG,利用SAS證明△PCH≌△PCG,即可得∠CPG=CPH,再利用等角的余角相等證得∠CPF=PCF,由此即可證得PF=CF;(3)連接PN,由(2)知PF=CF,已知EFCP,由等腰三角形的三線合一的性質(zhì)可得EF是線段CP的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)可得PN=CN,所以∠CPN=PCN,即可得∠PCN=CPN=45°,根據(jù)三角形的內(nèi)角和定理求得∠CNP=90°,又因∠CDP=90°,即可判定點C、D、P、N在以PC為直徑的圓上,根據(jù)同弧所對的圓周角相等即可得∠NDC=NPC =45°.

1)∵四邊形ABCD是正方形,

BC=CD,∠BCD=CBG=D=90°,

BG=DP,

∴△BCG≌△DCPSAS),

CP=CG,∠BCG=DCP,

∵∠PCG=45°,

∴∠BCG+DCP=45°,

∴∠DCP=BCG=22.5°,

∴∠PCF=PCG+BCG=67.5°,

在△PCG中,CP=CG,∠PCG=45°,

∴∠CPG=180°﹣45°)÷2=67.5°

∴∠CPG =PCF

PF=CF;

2)如圖,∵四邊形ABCD是正方形,

∴∠CBG=BCD=90°,

過點CCHCGAD的延長線于H,

∴∠CDH=90°=HCG

∴∠BCG=DCH

∴△BCG≌△DCHASA),

CG=CH

∵∠HCG=90°,∠PCG=45°,

∴∠PCH=45°=PCG,

CP=CP,

∴△PCH≌△PCGSAS),

∴∠CPG=CPH,

∵∠CPD+DCP=90°,

∴∠CPF+DCP=90°,

∵∠PCF+DCP=90°,

∴∠CPF=PCF,

PF=CF

3)如圖,連接PN,由(2)知,PF=CF,

EFCP

PE=CE,

EF是線段CP的垂直平分線,

PN=CN,

∴∠CPN=PCN,

∵∠PCN=45°,

∴∠CPN=45°,

∴∠CNP=90°,

∵∠CDP=90°,

∴點C、DP、N在以PC為直徑的圓上,

∴∠NDC=NPC =45°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是,連接交于點O,并分別與邊交于點,連接AE,下列結(jié)論:;;時,,其中正確結(jié)論的個數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】仔細閱讀下面的解題過程,并完成填空:如圖13,ADABC的中線,已知AD=4cm,試確定AB+AC的取值范圍.

解:延長ADE,使DE = AD,連接BE.

因為ADABC的中線,

所以BD=CD.

ACDEBD中,因為AD=DE,ADC=EDB,CD=BD,所以ACD≌△EBD__________).

所以BE=AC(_____________________).

因為AB+BE>AE(_____________________),

所以AB+AC>AE.

因為AE=2AD=8cm

所以AB+AC>_______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】岳池米粉是四川岳池的傳統(tǒng)特色小吃之一,距今有三百多年的歷史,為了將本地傳統(tǒng)小吃推廣出去,縣領導組織20輛汽車裝運A,BC三種不同品種的米粉42 t到外地銷售,按規(guī)定每輛車只裝同一品種米粉,且必須裝滿,每種米粉不少于2.

米粉品種

A

B

C

每輛汽車運載量/t

2.2

2.1

2

每噸米粉獲利/

600

800

500

(1)設用x輛車裝運A種米粉,用y輛車裝運B種米粉,根據(jù)上表提供的信息,求yx的函數(shù)關系式,并求x的取值范圍;

(2)設此次外售活動的利潤為w元,求wx的函數(shù)關系式以及最大利潤,并安排相應的車輛分配方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下表中的信息解決問題:

若該組數(shù)據(jù)的中位數(shù)不大于38,則符合條件的正數(shù)的取值共有( )

A. 3個 B. 4個 C. 5個 D. 6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知MN兩點在數(shù)軸上所表示的數(shù)分別為m,n,且mn滿足:|m12|+n+320

1)則m   ,n   

2)①情境:有一個玩具火車AB如圖所示,放置在數(shù)軸上,將火車沿數(shù)軸左右水平移動,當點A移動到點B時,點B所對應的數(shù)為m,當點B移動到點A時,點A所對應的數(shù)為n.則玩具火車的長為   個單位長度:

②應用:一天,小明問奶奶的年齡,奶奶說:我若是你現(xiàn)在這么大,你還要40年才出生呢;你若是我現(xiàn)在這么大,我已是老壽星,116歲了!”小明心想:奶奶的年齡到底是多少歲呢?聰明的你能幫小明求出來嗎?

3)在(2)①的條件下,當火車AB以每秒2個單位長度的速度向右運動,同時點P和點QN、M出發(fā),分別以每秒1個單位長度和3個單位長度的速度向左和向右運動.記火車AB運動后對應的位置為AB.是否存在常數(shù)k使得3PQkBA的值與它們的運動時間無關?若存在,請求出k和這個定值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種西裝和領帶,西裝每套定價200元,領帶每條定價40元。廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:

買一套西裝送一條領帶;西裝和領帶都按定價的90%付款,F(xiàn)某客戶要到該服裝廠購買西裝20套,領帶x條():

(1)若該客戶按方案購買,需付款______________元(用含x的代數(shù)式表示);若該客戶按方案購買,需付款________________用含x的代數(shù)式表示);

(2)若x=30,通過計算說明此時按哪種方案購買較為合算?

(3)當x=30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一病人發(fā)高燒進醫(yī)院進行治療,醫(yī)生給他開了藥并掛了水,同時護士每隔1小時對病人測體溫,及時了解病人的好轉(zhuǎn)情況,現(xiàn)護士對病人測體溫的變化數(shù)據(jù)如下表:

時 間

700

800

900

1000

1100

1200

1300

1400

1500

體溫(與前一次比較)

0.2

1.0

0.8

1.0

0.6

0.4

0.2

0.2

0

注:病人早晨進院時醫(yī)生測得病人體溫是40.2℃。

問:(1)病人什么時候體溫達到最高,最高體溫是多少?

2)病人中午12點時體溫多高?

3)病人幾點后體溫穩(wěn)定正常?(正常體溫是37℃

查看答案和解析>>

同步練習冊答案