如圖所示的4個的半徑均為1,那么圖中的陰影部分的面積為


  1. A.
    π+1
  2. B.
  3. C.
    4
  4. D.
    6
C
分析:順次連接四個圓的圓心.結(jié)合圖形發(fā)現(xiàn)陰影部分的面積即為邊長為2的正方形的面積.
解答:解:順次連接四個圓的圓心.
則陰影部分的面積=2×2=4.
故選C.
點評:此題要巧妙作輔助線,運用割補法即可把陰影部分的面積轉(zhuǎn)化為規(guī)則圖形的面積,即邊長為2的正方形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖所示的4個的半徑均為1,那么圖中的陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1上圖形有6個小圓,第2個圖形有10個小圓,和3個圖形有16個小圓,第4個圖形有24個小圓,…依此規(guī)律,第7個圖形的小圓的個數(shù)是
60
60
,第n個圖形的小圓的個數(shù)是
n2+n+4
n2+n+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分8分)
某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

【小題1】(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
【小題2】(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆四川省營山縣九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)
某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD。已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.

【小題1】(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
【小題2】(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,清說明理由.

查看答案和解析>>

同步練習(xí)冊答案