【題目】如圖所示,在第四象限內(nèi)的矩形OABC,兩邊在坐標(biāo)軸上,一個(gè)頂點(diǎn)在一次函數(shù)y=0.5x﹣3的圖象上,當(dāng)點(diǎn)A從左向右移動(dòng)時(shí),矩形的周長與面積也隨之發(fā)生變化,設(shè)線段OA的長為m,矩形的周長為C,面積為S.
(1)試分別寫出C、S與m的函數(shù)解析式,它們是否為一次函數(shù)?
(2)能否求出當(dāng)m取何值時(shí),矩形的周長最大?為什么?
【答案】(1)C=m+6,面積S=﹣0.5m2+3m, C是m的一次函數(shù),S不是m的一次函數(shù);(2)不能求出當(dāng)m取何值時(shí),矩形的周長最大.
【解析】
(1)由題意可知A(m,0),B(m,0.5m﹣3),從而得AB=3﹣0.5m,繼而根據(jù)矩形的周長公式和面積公式進(jìn)行求解可得相應(yīng)的函數(shù)解析式,然后再根據(jù)一次函數(shù)的概念進(jìn)行判斷即可;
(2)先確定出m的取值范圍為0<m<6,根據(jù)(1)中的周長,可知m越大周長越大,但m沒有是大值,因此不能求出當(dāng)m取何值時(shí),矩形的周長最大.
(1)由題意,可知A(m,0),B(m,0.5m﹣3),
則AB=|0.5m﹣3|=3﹣0.5m,
∴矩形的周長C=2(OA+AB)=2(m+3﹣0.5m)=m+6,
面積S=OAAB=m(3﹣0.5m)=﹣0.5m2+3m,
∴C是m的一次函數(shù),S不是m的一次函數(shù);
(2)不能求出當(dāng)m取何值時(shí),矩形的周長最大.
∵矩形OABC在第四象限內(nèi),
∴,
∴0<m<6,
又C=m+6,
∴不能求出當(dāng)m取何值時(shí),矩形的周長最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售每臺(tái)A型電腦的利潤為100元,銷售每臺(tái)B型電腦的利潤為150元,該商店計(jì)劃一次購進(jìn)A,B兩種型號(hào)的電腦共100臺(tái),設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)該商店計(jì)劃一次購進(jìn)A,B兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,那么商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作,AF與CE的延長線相交于點(diǎn)F,連接BF.
(1)求證:四邊形AFBD是平行四邊形;
(2)①若四邊形AFBD是矩形,則必須滿足條件_________;
②若四邊形AFBD是菱形,則必須滿足條件_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是某同學(xué)在沙灘上用石子擺成的小房子,請根據(jù)圖中的信息完成下列的問題:
(1)填寫下表:
圖形編號(hào) | ① | ② | ③ | ④ | …… |
圖中石子的總數(shù) | …… |
(2)第30個(gè)圖形需要用 顆石子;
(3)如果繼續(xù)擺放下去,那么第個(gè)圖案要用 顆石子;
(4)該同學(xué)準(zhǔn)備用300顆石子來擺放第個(gè)圖案,擺放成完整的圖案后,第個(gè)圖案 能否剛好用完這300顆石子?如果可以,求出的值,如果不能,求出的最大值以及至少還剩余多少顆石子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3﹣2x與x軸,y軸分別相交于點(diǎn)A,B,點(diǎn)P(x,y)是線段AB上的任意一點(diǎn),并設(shè)△OAP的面積為S.
(1)S與x的函數(shù)解析式,求自變量x的取值范圍.
(2)如果△OAP的面積大于1,求自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫圓,P是⊙O上一動(dòng)點(diǎn)且在第一象限內(nèi),過點(diǎn)P作⊙O的切線,與x、y軸分別交于點(diǎn)A、B.
(1)求證:△OBP與△OPA相似;
(2)當(dāng)點(diǎn)P為AB中點(diǎn)時(shí),求出P點(diǎn)坐標(biāo);
(3)在⊙O上是否存在一點(diǎn)Q,使得以Q,O,A、P為頂點(diǎn)的四邊形是平行四邊形.若存在,試求出Q點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在平面直角坐標(biāo)系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點(diǎn)旋轉(zhuǎn)180°得到△OA1B1,請畫出△OA1B1,并寫出A1,B1的坐標(biāo).
(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,請直接在答卷上填寫答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果用平面截掉一個(gè)長方體的一個(gè)角(即切去一個(gè)三棱錐),則剩下的幾何體最多有_____頂點(diǎn),最少有_____條棱.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com