如圖:點P是∠AOB內一定點,點M、N分別在邊OA、OB上運動,若∠AOB=45°,OP=,則△PMN的周長的最小值為   
【答案】分析:作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質可以證得:△COD是等腰直角三角形,據(jù)此即可求解.
解答:解:作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.
∵PC關于OA對稱,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.
∴△COD是等腰直角三角形.
則CD=OC=×3=6.
點評:本題考查了對稱的性質,正確作出圖形,理解△PMN周長最小的條件是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

63、如圖,點P是∠AOB的平分線上的一點,作PD⊥OA,垂足為D,PE⊥OB垂足為E,DE交OC于點F.則在圖中:
(1)總共有
3
對全等三角形;
(2)總共
8
個直角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,點E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、作圖題:如圖,點P是∠AOB內一點.
(1)過點p畫一條直線平行于BO;(2)過點P畫一條直線垂直于AO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是∠AOB內的一點,過點P作PC∥OB,PD∥OA,分別交OA、OB于點C、D,且PE⊥OA,精英家教網(wǎng)PF⊥OB,垂足分別為點E、F.
(1)求證:OC•CE=OD•DF;
(2)當點P位于∠AOB的什么位置時,四邊形CODP是菱形并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是∠AOB內部一點,點P關于OA、OB的對稱點是H、G,直線HG交OA、OB于點C、D,若HG=4cm,且∠AOB=30°,則△HOG的周長是
12
12
cm.

查看答案和解析>>

同步練習冊答案