【題目】如果點(diǎn)P是線段AB的黃金分割點(diǎn)(AP>BP),那么請(qǐng)你寫出一個(gè)關(guān)于線段AP、BP、AB之間的數(shù)量關(guān)系的等式,你的結(jié)論是:

【答案】AP2=BP?AB
【解析】解:∵點(diǎn)P是線段AB的黃金分割點(diǎn), ∴AP2=BPAB,
所以答案是:AP2=BPAB.
【考點(diǎn)精析】通過靈活運(yùn)用黃金分割,掌握把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),其中AC=0.618AB即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于正比例函數(shù)y=2x的圖象,下列敘述錯(cuò)誤的是( 。

A. 點(diǎn)(﹣1,﹣2)在這個(gè)圖象上 B. 函數(shù)值y隨自變量x的增大而減小

C. 圖象關(guān)于原點(diǎn)對(duì)稱 D. 圖象經(jīng)過一、三象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過程.

(1)作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;
(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;
(3)利用勾股定理求出AD的長,再計(jì)算三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:等邊△ABC的邊長為4,點(diǎn)P在線段AB上,點(diǎn)D在線段AC上,且△PDE為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),AD+AE的值為   

[類比探究]在上面的問題中,如果把點(diǎn)P沿BA方向移動(dòng),使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請(qǐng)寫出你的計(jì)算過程;

[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點(diǎn)P在線段BA延長線上,點(diǎn)D在線段CA延長線上,在△PDE中,PD=PE,∠DPE=a,設(shè)AP=m,則線段AD、AE有怎樣的等量關(guān)系?請(qǐng)用含m,a的式子直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)小組的兩位同學(xué)準(zhǔn)備測量兩幢教學(xué)樓之間的距離,如圖,兩幢教學(xué)樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學(xué)在A點(diǎn)測得池中噴泉處E點(diǎn)的俯角為42°,另一同學(xué)在C點(diǎn)測得E點(diǎn)的俯角為45°(點(diǎn)B,E,D在同一直線上),兩個(gè)同學(xué)已經(jīng)在學(xué)校資料室查出樓高AB=15m,CD=20m,求兩幢教學(xué)樓之間的距離BD.

(結(jié)果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)照?qǐng)D象,填空:

(1)當(dāng)x時(shí),2x-5=-x+1;
(2)當(dāng)x時(shí),2x-5>-x+1;
(3)當(dāng)x時(shí),2x-5<-x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是(

A.整數(shù)和分?jǐn)?shù)稱有理數(shù)B.互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等

C.正分?jǐn)?shù)、零和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)D.所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=∠CAB.

(1)求證:直線BF是⊙O的切線;

(2)若AB=5,sin∠CBF=,求BC和BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C的坐標(biāo)為(4,0),一次函數(shù) 的圖像分別交x軸、y軸于點(diǎn)A、點(diǎn)B.

(1)若點(diǎn)D是直線AB在第一象限內(nèi)的點(diǎn),且BD=BC,試求出點(diǎn)D的坐標(biāo).
(2)在⑴的條件下,若點(diǎn)Q是坐標(biāo)軸上的一個(gè)動(dòng)點(diǎn),試探索在第一象限是否存在另一個(gè)點(diǎn)P,使得以B、D、P、Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊)?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案