如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過點(diǎn)M作∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】分析:(1)根據(jù)拋物線y=經(jīng)過點(diǎn)B(0,4),以及頂點(diǎn)在直線x=上,得出b,c即可;
(2)根據(jù)菱形的性質(zhì)得出C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0),利用圖象上點(diǎn)的性質(zhì)得出x=5或2時(shí),y的值即可.
(3)首先設(shè)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,求出解析式,當(dāng)x=時(shí),求出y即可;
(4)利用MN∥BD,得出△OMN∽△OBD,進(jìn)而得出,得到ON=,進(jìn)而表示出△PMN的面積,利用二次函數(shù)最值求出即可.
解答:解:(1)∵拋物線y=經(jīng)過點(diǎn)B(0,4)
∴c=4,
∵頂點(diǎn)在直線x=上,
∴-=-=,
∴b=-;
∴所求函數(shù)關(guān)系式為;

(2)在Rt△ABO中,OA=3,OB=4,
∴AB=,
∵四邊形ABCD是菱形,
∴BC=CD=DA=AB=5,
∴C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0),
當(dāng)x=5時(shí),y=,
當(dāng)x=2時(shí),y=,
∴點(diǎn)C和點(diǎn)D都在所求拋物線上;

(3)設(shè)CD與對(duì)稱軸交于點(diǎn)P,則P為所求的點(diǎn),
設(shè)直線CD對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,

解得:

當(dāng)x=時(shí),y=,
∴P(),

(4)∵M(jìn)N∥BD,
∴△OMN∽△OBD,
得ON=,
設(shè)對(duì)稱軸交x于點(diǎn)F,
(PF+OM)•OF=+t)×,

S△PNF=×NF•PF=×(-t)×=,
S=(-),
=-(0<t<4),
a=-<0∴拋物線開口向下,S存在最大值.
由S△PMN=-t2+t=-(t-2+,
∴當(dāng)t=時(shí),S取最大值是,
此時(shí),點(diǎn)M的坐標(biāo)為(0,).
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用,以及菱形性質(zhì)和待定系數(shù)法求解析式,求圖形面積最值,利用二次函數(shù)的最值求出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2
+bx+c經(jīng)過B點(diǎn),且頂點(diǎn)在直線x=
5
2
上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的前提下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時(shí),點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=
k
x
與一次函數(shù)y=-x+(k+1)的圖精英家教網(wǎng)象在第四象限的交點(diǎn),AB⊥x軸于B,且S△ABO=
5
2

(1)求這個(gè)反比例函數(shù)和一次函數(shù)的解析式;
(2)求這個(gè)一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2+bx+c經(jīng)過B點(diǎn),且頂點(diǎn)在直線x=
5
2
上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)y=
k
x
與一次函數(shù)y=-x-(k+1)的圖象在第二象限的交點(diǎn).AB⊥x軸于B,且S△ABO=
3
2

(1)求這兩個(gè)函數(shù)的解析式;
(2)求兩個(gè)函數(shù)圖象的兩個(gè)交點(diǎn)A,C的坐標(biāo)和△AOC的面積;
(3)利用圖象判斷,當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的頂點(diǎn)A是雙曲線y=
k
x
與直線y=-x+(k+1)在第四象限的交點(diǎn),AB⊥x軸于B,且S△AOB=
3
2
,求這兩個(gè)函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案