【題目】如圖,一架梯子AC長2.5米,斜靠在一面墻上,梯子底端離墻0.7米.
(1)這個梯子的頂端距地面有多高?
(2)如果梯子的頂端下滑了0.4米到A′,那么梯子的底端在水平方向滑動了幾米?
【答案】(1)這個梯子的頂端距地面有2.4米;(2)梯子的底端在水平方向滑動了0.8米.
【解析】試題分析:(1)、根據(jù)Rt△ABC的勾股定理求出AB的長度,從而得出答案;(2)、根據(jù)題意得出A`C`和A`B的長度,然后根據(jù)勾股定理求出BC`的長度,從而得出答案.
試題解析:(1)、根據(jù)題意可得:AC=2.5米,BC=0.7米,∠ABC=90°,
∴AB=米,即梯子的頂端距地面有2.4米;
(2)、根據(jù)題意可得:A`C`=2.5米,A`B=2.4-0.4=2米,
∴BC`=米,則CC`=1.5-0.7=0.8米,即梯子的底端在水平方向滑動0.8米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,為減少交叉感染,催生了以智能技術(shù)為支撐的無接觸服務(wù).某快遞公司準(zhǔn)備購進(jìn),兩種型號的智能機(jī)器人送快遞.經(jīng)市場調(diào)査發(fā)現(xiàn),型號機(jī)器人的單價比型號機(jī)器人貴600元,3臺型號機(jī)器人比2臺型號機(jī)器人貴1200元.
(1)求,兩種型號機(jī)器人的單價各是多少元?
(2)若該快遞公司準(zhǔn)備用不超過132000元購進(jìn),兩種型號機(jī)器人共50臺,請問該快遞公司最多可購進(jìn)型號機(jī)器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,CD⊥AB,垂足為D,如果CD=12,AD=16,BD=9,那么△ABC是直角三角形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直線上一點(diǎn),為直線上一點(diǎn),
(1)如圖1,當(dāng)在上,在上時,求證;
(2)如圖2,當(dāng)在的延長線上,在的延長線上時,點(diǎn)在上,連接,且,求證:
(3)如圖3,在(2)的條件下,連接當(dāng)平分時,將沿著折至探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC為等邊三角形,D為BC上任一點(diǎn),∠ADE=60°,邊DE與∠ACB外角的平分線相交于點(diǎn)E.
(1)求證:AD=DE.
(2)若點(diǎn)D在CB的延長線上,如圖2,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°, D是AB邊上一點(diǎn),且DB=DC,過BC上一點(diǎn)P(不包括B,C二點(diǎn))作PE⊥AB,垂足為點(diǎn)E, PF⊥CD,垂足為點(diǎn)F,已知AD:DB=1:4,BC= ,求PE+PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某商場用8萬元購進(jìn)一批新款襯衫,上架后很快銷售一空,商場又緊急購進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價漲了4元/件,結(jié)果共用去17.6萬元.
(1)該商場第一批購進(jìn)襯衫多少件?
(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com