如圖,等腰直角三角形ABC直角邊長為1,以它的斜邊上的高AD為腰做第一個等腰直角三角形ADE;再以所作的第一個等腰直角三角形ADE的斜邊上的高AF為腰做第二個等腰直角三角形AFG;…以此類推,這樣所作的第n個等腰直角三角形的腰長為   
【答案】分析:通過直角三角形的性質(zhì)特點,斜邊上的高等于斜邊的一半,再分析規(guī)律,便能計算出答案了.
解答:解:∵等腰直角△ABC直角邊長為1,
∴斜邊長為==
斜邊上的高也是斜邊上的中線,應該等于斜邊的一半.
那么第一個等腰直角三角形的腰長為;
∴第二個等腰直角三角形的斜邊長==1,
∴第二個等腰直角三角形的腰長==,
那么第n個等腰直角三角形的腰長為
故第n個等腰直角三角形的腰長為
點評:解決本題的關鍵是根據(jù)等腰直角三角形的性質(zhì)得到其他等腰直角三角形的表示規(guī)律.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形ABC繞C點按順時針旋轉到△A1B1C1的位置(A、C、B1在同一直線上),∠B=90°,如果AB=1,那么AC運動到A1C1所經(jīng)過的圖形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰直角三角形ABC的腰長與正方形DEFG的邊長相符,且邊AC與DE在同一直線l上,△ABC從如圖所示的起始位置(A、E重合),沿直線l水平向右平移,直至C、D重合為止.設△ABC與正方形DEFG重疊部分的面積為y,平移的距離為x,則y與x之間的函數(shù)關系大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰直角三角形ABC中,∠BAC=90°,D、E分別為AB、AC邊上的點,AD=AE,AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M.
(1)求證:△ADC≌△AEB;
(2)判斷△EGM是什么三角形,并證明你的結論;
(3)判斷線段BG、AF與FG的數(shù)量關系并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰直角三角形△ABC中,∠ACB=90°,點D是BC的中點,CE⊥AD于點F交AB于點E,CH是AB上的高交AD于點G.
(1)找出圖中的全等三角形;
(2)找出與∠ADC相等的角,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰直角三角形AEF的頂點E在等腰直角三角形ABC的邊BC上.AB的延長線交EF于D點,其中∠AEF=∠ABC=90°.
(1)求證:
AD
AE
=
2
AE
AC
;
(2)若E為BC的中點,求
DB
DA
的值.

查看答案和解析>>

同步練習冊答案