【題目】如圖平面直角坐標(biāo)系中,已知三點 A0,7),B8,1),Cx,0)且 0<x <8

1)求線段 AB 的長;

2)請用含 x 的代數(shù)式表示 AC+BC 的值;

3)求 AC+BC 的最小值.

【答案】1AB=10;(2+;(3AC+BC最小值為8

【解析】

1)根據(jù)兩點間的距離公式可求線段AB的長;

2)根據(jù)兩點間的距離公式可求線段ACBC的值,再相加即可求解;

3)作B點關(guān)于x軸對稱點F點,連接AF,與x軸相交于點C.此時AC+BC最短.根據(jù)兩點間的距離公式即可求解.

1;

2AC+BC

3)如圖,作B點關(guān)于x軸對稱點F點,連接AF,與x軸相交于點C.此時AC+BC最短.

B8,1),∴F8,-1),∴AC+BC=AC+CF=AF=

AC+BC最小值為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE;

(2)AFAD,求證:四邊形ABFC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C,D在線段AB上,△PCD是等邊三角形.

(1)當(dāng)AC,CD,DB滿足怎樣的關(guān)系時,△ACP∽△PDB?

(2)當(dāng)△ACP∽△PDB時,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】★若兩個扇形滿足弧長的比等于它們半徑的比,則稱這兩個扇形相似.如圖,如果扇形AOB與扇形A1O1B1是相似扇形,且半徑OAO1A1k(k為不等于0的常數(shù)).那么下面四個結(jié)論:①∠AOBA1O1B1;②△AOB∽△A1O1B1;k;④扇形AOB與扇形A1O1B1的面積之比為k2.成立的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,王亮同學(xué)從家里跑步到體育館,在那里鍛煉了一陣后又走到某書店去買書,然后散步走回家如圖反映的是在這一過程中,王亮同學(xué)離家的距離s(千米)與離家的時間t(分鐘)之間的關(guān)系,請根據(jù)圖象解答下列問題:

1)體育館離家的距離為多少千米,書店離家的距離為多少千米;王亮同學(xué)在書店待了多少分鐘.

2)分別求王亮同學(xué)從體育館走到書店的平均速度和從書店出來散步回家的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一天,小明和小亮來到一河邊,想用遮陽帽和皮尺測量這條河的大致寬度,兩人在確保無安全隱患的情況下,先在河岸邊選擇了一點B(B與河對岸岸邊上的一棵樹的底部點D所確定的直線垂直于河岸)

①小明在B點面向樹的方向站好,調(diào)整帽檐,使視線通過帽檐正好落在樹的底部點D處,如圖所示,這時小亮測得小明眼睛距地面的距離AB1.7米;

②小明站在原地轉(zhuǎn)動180°后蹲下,并保持原來的觀察姿態(tài)(除身體重心下移外,其他姿態(tài)均不變),這時視線通過帽檐落在了DB延長線上的點E處,此時小亮測得BE9.6米,小明的眼睛距地面的距離CB1.2米.

根據(jù)以上測量過程及測量數(shù)據(jù),請你求出河寬BD是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個20米高的樓頂上有一信號塔DC,某同學(xué)為了測量信號塔的高度,在地面的A處測得信號塔下端D的仰角為30°,然后他正對塔的方向前進(jìn)了8米到達(dá)B處,又測得信號塔頂端C的仰角為45°,CEAB于點E,EB、A在一條直線上.則信號塔CD的高度為(  )

A. 20 B. (208) C. (2028) D. (2020)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.

1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的一種圖形的名稱 ;

2)如圖 1,已知格點(小正方形的頂點)O0,0),A3,0),B04),請你直接寫出所有以格點為頂點,OA、OB 為勾股邊且有對角線相等的勾股四邊形 OAMB 的頂點M 的坐標(biāo): ;

3)如圖 2,將△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) 60°,得到△DBE,連接 ADDC,∠DCB=30°.求證: DC2 BC2 AC2 ,即四邊形 ABCD 是勾股四邊形;

4)若將圖 2 中△ABC 繞頂點 B 按順時針方向旋轉(zhuǎn) a 度(a 90°),得到△DBE,連接 AD、DC,則當(dāng)∠DCB= °時,四邊形BECD 是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1).若以C,D,E(E在格點上)為頂點的三角形與ABC相似,則點E的坐標(biāo)不可能是( )

A. (6,0) B. (4,2) C. (6,5) D. (6,3)

查看答案和解析>>

同步練習(xí)冊答案