【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC=60° 求:
(1)∠AOD的度數(shù);
(2)∠AOB的度數(shù);
(3)∠DOB的度數(shù).
【答案】(1)∠AOD=45°;(2)∠AOB=150°;(3)∠DOB=105°.
【解析】
(1)根據(jù)∠AOC是直角,OD平分∠AOC及角平分線的定義,解答即可;
(2)根據(jù)圖形,計(jì)算∠AOC與∠BOC的和,即可解答;
(3)根據(jù)角平分線的定義,求出∠DOC,計(jì)算∠DOC與∠BOC的和,即可解答.
(1)∵∠AOC是直角,OD平分∠AOC,
∴∠AOD=∠AOC=×90°=45°;
(2)∵∠AOC=90°,∠BOC=60°,
∴∠AOB=∠AOC+∠BOC=90°+60°=150°;
(3)∵∠AOC是直角,OD平分∠AOC,
∴∠COD=∠AOC=×90°=45°,
∵∠BOC=60°,
∴∠DOB=∠DOC+∠COB=45°+60°=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b,c,ab<0,ac>0,且|c|>|b|>|a|,數(shù)軸上a,b,c對(duì)應(yīng)的點(diǎn)分別為A,B,C.
(1)若a=1,請(qǐng)你在數(shù)軸上標(biāo)出點(diǎn)A,B,C的大致位置;
(2)若|a|=﹣a,則a 0,b 0,c 0;(填“>”、“<“或“=”)
(3)小明判斷|a﹣b|﹣|b+c|+|c﹣a|的值一定是正數(shù),小明的判斷是否正確?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)6班的一個(gè)互助學(xué)習(xí)小組組長(zhǎng)收集并整理了組員們討論如下問(wèn)題時(shí)所需的條件:如圖所示,在四邊形ABCD中,點(diǎn)E、F分別在邊BC、AD上,____,求證:四邊形AECF是平行四邊形. 你能在橫線上填上最少且簡(jiǎn)捷的條件使結(jié)論成立嗎?
條件分別是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.
其中A、B、C、D四位同學(xué)所填條件符合題目要求的是( 。
A. ①②③④B. ①②③C. ①④D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將Rt△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到Rt△COD,CD的延長(zhǎng)線,交AB于點(diǎn)E,連接BC,二次函數(shù)的圖象過(guò)點(diǎn)A、B、C.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是線段BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)∠PBC=75°時(shí),求點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)F,在拋物線的對(duì)稱軸上,是否存在一點(diǎn)Q,使得以點(diǎn)Q、O、F為頂點(diǎn)的三角形,與△BDE相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結(jié)論: ① 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) ② 當(dāng) x > 3 時(shí), ③ 當(dāng) x =1時(shí), BC = 8
④ 當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在藝術(shù)節(jié)中組織中小學(xué)校文藝匯演,甲、乙兩所學(xué)校共92名學(xué)生其中甲校學(xué)生多于乙校學(xué)生,且甲校學(xué)生不足90名,現(xiàn)準(zhǔn)備統(tǒng)一購(gòu)買(mǎi)服裝參加演出,下表是某服裝廠給出的演出服裝價(jià)格表:
購(gòu)買(mǎi)服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套及以上 |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
如果兩所學(xué)校單獨(dú)購(gòu)買(mǎi)服裝,一共應(yīng)付5000元
(1)甲、乙兩校各有多少名學(xué)生準(zhǔn)備參加匯演?
(2)如果甲、乙兩校聯(lián)合起來(lái)購(gòu)買(mǎi)服裝,那么比各自購(gòu)買(mǎi)服裝共可以節(jié)省多少錢(qián)?
(3)如果甲校有10名學(xué)生被調(diào)去參加書(shū)法繪畫(huà)比賽不能參加演出,請(qǐng)你為兩校設(shè)計(jì)購(gòu)買(mǎi)服裝方案,并說(shuō)明哪一種最省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,記與的函數(shù)(≠0,n≠0)的圖象為圖形G, 已知圖形G與軸交于點(diǎn),當(dāng)時(shí),函數(shù)有最小(或最大)值n, 點(diǎn)B的坐標(biāo)為(, ),點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)分別為C、D,若A、B、C、D中任何三點(diǎn)都不在一直線上,且對(duì)角線AC,BD的交點(diǎn)與原點(diǎn)O重合,則稱四邊形ABCD為圖形G的伴隨四邊形,直線AB為圖形G的伴隨直線.
(1)如圖,若函數(shù)的圖象記為圖形G,求圖形G的伴隨直線的表達(dá)式;
(2)如圖,若圖形G的伴隨直線的表達(dá)式是,且伴隨四邊形的面積為12,求與的函數(shù)(m>0,n <0)的表達(dá)式;
(3)如圖,若圖形G的伴隨直線是,且伴隨四邊形ABCD是矩形,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若BC=4,BG=3,則GE的長(zhǎng)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com