如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4m,拋物線頂點到線段MN的距離是4m,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在邊MN上,點A、D落在拋物線上,這樣截下的矩形鐵皮的周長能否等于8m?
分析:以MN為x軸,其中點O為坐標(biāo)原點建立直角坐標(biāo)系,得出M、N及拋物線頂點坐標(biāo),從而求出拋物線的解析式,設(shè)A(x,y),建立含x的方程,矩形鐵皮的周長能否等于8米,取決于求出x的值是否在已求得的拋物線解析式中自變量的取值范圍內(nèi).
解答:解:以MN所在的直線為x軸,以MN的垂直平分線為y軸,建立平面直角坐標(biāo)系,
則N(2,0),頂點坐標(biāo)為(0,4),
設(shè)拋物線的解析式為y=ax2+4,將N(2,0)代入得:
4a+4=0,
解得:a=-1,
則拋物線的解析式為y=-x2+4,
因為點A、D落在拋物線上,
設(shè)A(m,-m2+4)(0<m<2),則D(-m,-m2+4),
所以矩形鐵皮的周長為4m+2(4-m2)=-2m2+4m+8,
假如截下的矩形鐵皮的周長等于8,
則-2m2+4m+8=8,
解得m1=0,m2=2,
但這兩個解都不在0<m<2的范圍內(nèi),
所以這樣截下的矩形鐵皮的周長不可能等于8m.
點評:此題考查了二次函數(shù)的應(yīng)用,把一個實際問題轉(zhuǎn)化成數(shù)學(xué)問題,需要觀察分析、建模,建立直角坐標(biāo)系下的函數(shù)模型是解決實際問題的常用方法,同一問題有不同的建模方式,通過分析比較可獲得簡解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4分米,拋物線頂點處到邊MN的距離是4分米,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在邊MN上,A、D落在拋物線上,問這樣截下的矩形鐵皮的周長能否等于8分米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下。ㄅ浔睅煷笳n標(biāo)) 配北師大課標(biāo) 題型:044

如圖(a)所示,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4分米,拋物線頂點處到邊MN的距離是4分米.要在鐵皮下截下一矩形ABCD,使矩形頂點B,C落在邊MN上,A,D落在拋物線上,問這樣截下的矩形鐵皮的周長能否等于8分米?(提示:以MN所在的直線為x軸建立適當(dāng)?shù)闹苯亲鴺?biāo)系)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007-2008年蘇州立達(dá)中學(xué)初三第一學(xué)期期中考卷、數(shù)學(xué)試題 題型:044

如圖所示,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=8 m,拋物線頂點處到MN的距離是4 m,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在MN上,A、D落在拋物線上,問截下的矩形的周長能否等于18 m?如果能,請求出矩形的邊長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo)九年級數(shù)學(xué)競賽培訓(xùn)第10講:拋物線(解析版) 題型:解答題

如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4分米,拋物線頂點處到邊MN的距離是4分米,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在邊MN上,A、D落在拋物線上,問這樣截下的矩形鐵皮的周長能否等于8分米?

查看答案和解析>>

同步練習(xí)冊答案