將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC=____;直線BC與直線B′C′所夾的銳角為______度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
(1) 3,60;(2)60°,2;(3)72°,.
【解析】
試題分析:(1)根據(jù)題意得:△ABC∽△AB′C′,∴S△AB′C′:S△ABC=,∠B=∠B′,
∵∠ANB=∠B′NM,∴∠BMB′=∠BAB′=60°;(2)由四邊形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′-∠BAC,即可求得θ的度數(shù),又由含30°角的直角三角形的性質(zhì),即可求得n的值,(3)由四邊形ABB′C′是平行四邊形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根據(jù)相似三角形的對應(yīng)邊成比例,易得AB2=CB•BB′=CB(BC+CB′),繼而求得答案.
試題解析:(1) 3;60.
(2)∵四邊形 ABB′C′是矩形,∴∠BAC′=90°.
∴θ=∠CAC′=∠BAC′﹣∠BAC=90°﹣30°=60°.
在 Rt△AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B=30°.
∴AB′=2 AB,即.
(3)∵四邊形ABB′C′是平行四邊形,∴AC′∥BB′.
又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°.
∴∠C′AB′=∠BAC=36°.
而∠B=∠B,∴△ABC∽△B′BA. ∴AB:BB′=CB:AB. ∴AB2=CB•BB′=CB(BC+CB′).
而 CB′=AC=AB=B′C′,BC=1,∴AB2=1(1+AB),解得,.
∵AB>0,∴.
考點:1.新定義;2.旋轉(zhuǎn)的性質(zhì);3.矩形的性質(zhì);4.含300角直角三角形的性質(zhì);5.平行四邊形的性質(zhì);6.相似三角形的判定和性質(zhì);7.公式法解一元二次方程.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆海南省儋州市一中中考第二次模擬數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(1,0)。
⑴ 畫出△ABC關(guān)于軸對稱的△A1B1C1;
⑵ 畫出將△ABC繞原點O按逆方向旋轉(zhuǎn)所得的△A2B2C2;
⑶ △A1B1C1與△A2B2C2成軸對稱嗎?若成軸對稱,畫出所有的對稱軸;
⑷ △A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年海南省儋州市一中中考第二次模擬數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點B的坐標(biāo)為(1,0)。
⑴ 畫出△ABC關(guān)于軸對稱的△A1B1C1;
⑵ 畫出將△ABC繞原點O按逆方向旋轉(zhuǎn)所得的△A2B2C2;
⑶ △A1B1C1與△A2B2C2成軸對稱嗎?若成軸對稱,畫出所有的對稱軸;
⑷ △A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com