如圖,在平面直角坐標中,邊長為2的正方形的兩頂點、分別在軸、軸的正半軸上,點在原點.現(xiàn)將正方形點順時針旋轉(zhuǎn),旋轉(zhuǎn)角為θ,當點第一次落在直線上時停止旋轉(zhuǎn).旋轉(zhuǎn)過程中,邊交直線于點邊交軸于點.

(1)當點第一次落在直線上時,求A、B兩點坐標(直接寫出結(jié)果);
(2)設的周長為,在旋轉(zhuǎn)正方形的過程中,值是否有變化?請證明你的結(jié)論.
(1) A點坐標為(),B點坐標為(2,0)    4分
(2)值無變化.     證明 見解析         5分
(1)根據(jù)勾股定理求得兩點的坐標;
(2)延長BA交y軸于E點,可以證明:△OAE≌△OCN,△OME≌△OMN證得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.
從而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.
證明:延長軸于點.在
 
.            7分

   ∴.
 ∴      8分
.   10分
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

小華觀察鐘面(圖1),了解到鐘面上的分針每小時旋轉(zhuǎn)360度,時針毎小時旋轉(zhuǎn)30度.他為了進一步探究鐘面上分針與時針的旋轉(zhuǎn)規(guī)律,從下午2:00開始對鐘面進行了一個小時的觀察.為了探究方便,他將分針與分針起始位置OP(圖2)的夾角記為y1度,時針與OP的夾角記為y2度(夾角是指不大于平角的角),旋轉(zhuǎn)時間記為t分鐘.觀察結(jié)束后,他利用獲得的數(shù)據(jù)繪制成圖象(圖3),并求出y1與t的函數(shù)關(guān)系式:

請你完成:
小題1:求出圖3中y2與t的函數(shù)關(guān)系式;
小題2:直接寫出A、B兩點的坐標,并解釋這兩點的實際意義;
小題3:若小華繼續(xù)觀察一個小時,請你在題圖3中補全圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

明明騎自行車去上學時,經(jīng)過一段先上坡后下坡的路,在這段路上所走的路程s(單位:千米)與時間t單位:分)之間的函數(shù)關(guān)系如圖所示.放學后如果按原路返回,且往返過程中,上坡速度相同,下坡速度相同,那么他回來時,走這段路所用的時間為(   )
A.12分B.10分C.16分D.14分

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知直線y=mx-1上有一點B(1,n),它到原點的距離是,則此直線與兩坐標軸圍成的三角形的面積為                                                    
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點C(-3,0),點A、B分別在x軸,y軸的正半軸上,且滿足.
小題1:求點A、B坐標
小題2:若點P從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接AP。設△ABP面積為S,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍
小題3:在(2)的條件下,是否存在點P,使以點A、B、P為頂點的三角形與△AOB相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由。(本題滿分8分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

甲、乙兩同學從A地出發(fā),騎自行車在同一條路上行駛到距A地18千米的B地,他們離出發(fā)地的距離S(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖中提供的信息,下列不符合圖象描述的說法是
A.甲同學比乙同學先出發(fā)半小時
B.乙比甲先到達B地
C.乙在行駛過程中沒有追上甲
D.甲的行駛速度比乙的行駛速度慢

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市出租車5㎞內(nèi)(包括5㎞)起步價為8元,以后每增加1㎞加價2元(不足1㎞按1㎞計),請寫出乘坐出租車路程x㎞(x為整數(shù))與收費y元的函數(shù)關(guān)系式,并計算小明乘了10㎞要付多少錢?(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質(zhì)量為            kg

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,L,L分別表示A步行與B騎車在同一路上行駛的路程S(千米)與時間t(小時)的關(guān)系。根據(jù)圖像,回答下列問題:

小題1:B出發(fā)時與A相距        千米。
小題2:走了一段路后,自行車發(fā)生故障,進行修理,所用的時
間是      小時。
小題3:B出發(fā)后      小時與A相遇
小題4:若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,     那么與A的相遇點離B的出發(fā)點相距      千米。在圖中表示出這個相遇點C

查看答案和解析>>

同步練習冊答案