如果一個(gè)圖形經(jīng)過分割,能成為若干個(gè)與自身相似的圖形,我們稱它為“能相似分割的圖形”,如圖所示的等腰三角形和矩形就是能相似分割的圖形。
 (1)你能否再各舉出一個(gè) “能相似分割”的三角形和四邊形?
 (2)一般的三角形是否“能相似分割的圖形”?如果是的話給出一種分割方案,否則說明原因.

解:(1)直角三角形;一組底角是60°、三邊相等的等腰梯形
(2)三角形都是“能相似分割的圖形”(提示:順次連結(jié)三角形三邊中點(diǎn),將三角形分成的四個(gè)三角形都和原三角形相似)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如果一個(gè)圖形經(jīng)過分割,能成為若干個(gè)與自身相似的圖形,我們稱它為“能相似分割的圖形”,如圖所示的等腰直角三角形和矩形就是能相似分割的圖形.
(1)你能否再各舉出一個(gè)“能相似分割”的三角形和四邊形;
(2)一般的三角形是否是“能相似分割的圖形”?如果是請(qǐng)給出一種分割方案并畫出圖形,否則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:如果一個(gè)圖形經(jīng)過分割,能分為4個(gè)與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點(diǎn)D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
精英家教網(wǎng)
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請(qǐng)你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計(jì)一種方案,將任意△ABC分割成四個(gè)與△ABC相似的小三角形,且其中至少有兩個(gè)小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計(jì)出了分法.請(qǐng)你完成小華的分法,并簡(jiǎn)單地說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義:如果一個(gè)圖形經(jīng)過分割,能分為4個(gè)與自身相似的圖形,我們稱它為“能四階自相似分割圖形”.如圖1,任意△ABC取各邊的中點(diǎn)D、E、F,連接DE、EF、DF,分得的△ADF、△BDE、△DEF、△CEF顯然都與△ABC相似,則任意△ABC是“能四階自相似分割圖形”.
作業(yè)寶
(1)小明發(fā)現(xiàn):任意矩形ABCD(如圖2)也是“能四階自相似分割圖形”.請(qǐng)你利用尺規(guī)作圖作出分割線.(保留作圖痕跡,不要求寫作法)
(2)同組的小華思考后提出:能不能設(shè)計(jì)一種方案,將任意△ABC分割成四個(gè)與△ABC相似的小三角形,且其中至少有兩個(gè)小三角形的相似比不為1?為了研究方便,小華取AB=6,AC=4,BC=5,(如圖3)并成功地設(shè)計(jì)出了分法.請(qǐng)你完成小華的分法,并簡(jiǎn)單地說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)圖形經(jīng)過分割,能成為若干個(gè)與自身相似的圖形,我們稱它為“能相似分割的圖形”,如圖所示的等腰三角形和矩形就是能相似分割的圖形.

    (1)你能否再各舉出一個(gè) “能相似分割”的三角形和四邊形?

    (2)一般的三角形是否“能相似分割的圖形”?如果是的話給出一種分割方案,否則說明原因.

查看答案和解析>>

同步練習(xí)冊(cè)答案