如圖,已知平面直角坐標(biāo)系中,點(diǎn)A(2,m),B(-3,n)為兩動(dòng)點(diǎn),其中m﹥1,連結(jié),,作軸于點(diǎn),軸于點(diǎn).
(1)求證:mn=6;
(2)當(dāng)時(shí),拋物線經(jīng)過(guò)兩點(diǎn)且以軸為對(duì)稱(chēng)軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線交軸于點(diǎn),過(guò)點(diǎn)作直線交拋物線于兩點(diǎn),問(wèn)是否存在直線,使S⊿POF:S⊿QOF=1:2?若存在,求出直線對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.
解:(1)點(diǎn)坐標(biāo)分別為(2,m),(-3,n),∴BC=n,OC=3,OD=2,AD=m,
又,易證,∴,
∴,
∴mn=6.
(2)由(1)得,,又,,
即∴,
又,∴,又∵mn=6, ∴
∴m=6(),n=1
坐標(biāo)為坐標(biāo)為,易得拋物線解析式為.
(3)直線為,且與軸交于點(diǎn),
假設(shè)存在直線交拋物線于兩點(diǎn),且使S⊿POF:S⊿QOF=1:2,如圖所示,
則有PF:FQ=1:2,作軸于點(diǎn),軸于點(diǎn),
在拋物線上,設(shè)坐標(biāo)為,
則FM=,易證,∴,
∴QN=2PM=-2t,NF=2MF=,∴
點(diǎn)坐標(biāo)為,Q點(diǎn)在拋物線上,
,解得,
坐標(biāo)為,坐標(biāo)為,
易得直線為.
根據(jù)拋物線的對(duì)稱(chēng)性可得直線的另解為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,
與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐
標(biāo)為2,
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫(xiě)出時(shí)x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題
已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐
標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過(guò)點(diǎn)D作直線=-+交折線O-A-B于點(diǎn)E.
(1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對(duì)稱(chēng)的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;
(3)問(wèn)題(2)中的四邊形DMEN中,ME的長(zhǎng)為_(kāi)___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com