如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=數(shù)學(xué)公式的圖象交于一、三象限內(nèi)的A、B兩點,直線AB與x軸交于點C,點B的坐標(biāo)為(-6,n),線段OA=5,E為x軸正半軸上一點,且tan∠AOE=數(shù)學(xué)公式
(1)求反比例函數(shù)的解析式;
(2)求△AOB的面積.

解:(1)過點A作AD⊥x軸,
在Rt△AOD中,∵tan∠AOE==,
設(shè)AD=4x,OD=3x,
∵OA=5,
在Rt△AOD中,根據(jù)勾股定理解得AD=4,OD=3,
∴A(3,4),
把A(3,4)代入反比例函數(shù)y=中,
解得:m=12,
則反比例函數(shù)的解析式為y=

(2)把點B的坐標(biāo)為(-6,n)代入y=中,
解得n=-2,
則B的坐標(biāo)為(-6,-2),
把A(3,4)和B(-6,-2)分別代入一次函數(shù)y=kx+b(k≠0)得,
解得,
則一次函數(shù)的解析式為y=x+2,
∵點C在x軸上,令y=0,得x=-3
即OC=3,
∴S△AOB=S△AOC+S△BOC=×3×4+×3×2=9.
分析:(1)過點A作AD⊥x軸,在直角三角形AOD中,根據(jù)已知的三角函數(shù)值和線段OA的長求出AD與OD的長,得到點A的坐標(biāo),代入反比例函數(shù)解析式中求出反比例函數(shù)的解析式;
(2)把點B的橫坐標(biāo)代入反比例函數(shù)解析式中得到B的坐標(biāo),然后分別把點A和點B的坐標(biāo)代入一次函數(shù)解析式中,求出k與b的值即可得到一次函數(shù)解析式,從而求出點C的坐標(biāo),得到OC的長,最后利用三角形的面積公式求出三角形AOC與三角形BOC的面積,相加即可得到三角形AOB的面積.
點評:此題考查了反比例函數(shù)與一次函數(shù)的交點問題,勾股定理,三角形函數(shù)值,以及三角形的面積公式的運用,用待定系數(shù)法確定函數(shù)的解析式,是常用的一種解題方法.同學(xué)們要熟練掌握這種方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案