(2009•達州)如圖,⊙O的弦AD∥BC,過點D的切線交BC的延長線于點E,AC∥DE交BD于點H,DO及延長線分別交AC、BC于點G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

【答案】分析:(1)由DE是⊙O的切線,且DF過圓心O,可得DF⊥DE,又由AC∥DE,則DF⊥AC,進而可知DF垂直平分AC;
(2)可先證△AGD≌△CGF,四邊形ACED是平行四邊形,即可證明FC=CE;
(3)連接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;設圓的半徑為r,則AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=
解答:(1)證明:∵DE是⊙O的切線,且DF過圓心O,
∴DF是⊙O的直徑所在的直線,
∴DF⊥DE,
又∵AC∥DE,
∴DF⊥AC,
∴G為AC的中點,即DF平分AC,則DF垂直平分AC;(2分)

(2)證明:由(1)知:AG=GC,
又∵AD∥BC,
∴∠DAG=∠FCG;
又∵∠AGD=∠CGF,
∴△AGD≌△CGF(ASA),(4分)
∴AD=FC;
∵AD∥BC且AC∥DE,
∴四邊形ACED是平行四邊形,
∴AD=CE,
∴FC=CE;(5分)

(3)解:連接AO,
∵AG=GC,AC=8cm,
∴AG=4cm;
在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9,
∴GD=3;(6分)
設圓的半徑為r,則AO=r,OG=r-3,
在Rt△AOG中,由勾股定理得AO2=OG2+AG2,
有:r2=(r-3)2+42
解得r=,(8分)
∴⊙O的半徑為cm.
點評:本題考查了圓的切線性質,及解直角三角形的知識.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年北京市宣武區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標為(-2,4),點B的橫坐標為-4.
(1)試確定反比例函數(shù)的關系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•達州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側),過點A的直線交拋物線于另一點C,點C的坐標為(-2,6).
(1)求a的值及直線AC的函數(shù)關系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標為(-2,4),點B的橫坐標為-4.
(1)試確定反比例函數(shù)的關系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市采荷中學中考數(shù)學模擬試卷(5月份)(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標為(-2,4),點B的橫坐標為-4.
(1)試確定反比例函數(shù)的關系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省達州市中考數(shù)學試卷(解析版) 題型:解答題

(2009•達州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側),過點A的直線交拋物線于另一點C,點C的坐標為(-2,6).
(1)求a的值及直線AC的函數(shù)關系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案