如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-2,3),B(-3,2),C(-1,1).
(1)若將△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,請(qǐng)畫出平移后的△A1B1C1
(2)畫出△A1B1C1繞原點(diǎn)旋轉(zhuǎn)180°后得到的△A2B2C2;
(3)若△A′B′C′與△ABC是中心對(duì)稱圖形,則對(duì)稱中心的坐標(biāo)為______.

【答案】分析:(1)將△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,即將A,B,C,分別右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,可得出平移后的△A1B1C1;
(2)將△A1B1C1三頂點(diǎn)A1,B1,C1,繞原點(diǎn)旋轉(zhuǎn)180°,即可得出△A2B2C2
(3)△A′B′C′與△ABC是中心對(duì)稱圖形,連接對(duì)應(yīng)點(diǎn)即可得出答案.
解答:解:(1)將A,B,C,分別右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,可得出平移后的△A1B1C1

(2)將△A1B1C1三頂點(diǎn)A1,B1,C1,繞原點(diǎn)旋轉(zhuǎn)180°,即可得出△A2B2C2;

(3)∵△A′B′C′與△ABC是中心對(duì)稱圖形,
連接AA′,BB′CC′可得出交點(diǎn):(1,0),
故答案為:(1,0).
點(diǎn)評(píng):此題主要考查了平移的性質(zhì),以及旋轉(zhuǎn)的性質(zhì)和中心對(duì)稱圖形的性質(zhì),題目綜合性較強(qiáng)考查知識(shí)表全面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案