【題目】如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE.過(guò)點(diǎn)AAE的垂線交ED于點(diǎn)P.若AEAP2,PB2.則正方形ABCD的面積是_____

【答案】16+4

【解析】

首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB,可得∠ADP=∠ABE,∠DOA=∠BOE,可證BEDE,過(guò)BBFAE,交AE的延長(zhǎng)線于F,如圖1,由勾股定理可求EF的長(zhǎng),即可求解.

如圖1:

∵四邊形ABCD是正方形,

ADAB,∠BAD90°,

∵∠PAE90°,

∴∠DAP=∠BAE,

在△APD與△AEB中,

∴△APD≌△AEBSAS),

∴∠ADP=∠ABE,∠DOA=∠BOE,

∵∠ADP+DOA90°,

∴∠ABE+BOE90°,

∴∠DEB90°

過(guò)BBFAE,交AE的延長(zhǎng)線于F,如圖2

在△AEP中,AEAP2,根據(jù)勾股定理得PE2,

在△BEP中,PB2,PE2,

根據(jù)勾股定理得:BE

∵∠BEF180°45°90°45°,

∴∠EBF45°

BFAF,

EFBF

EFBF,

AF2+,

∴正方形ABCD的面積=AB2AF2+BF216+4

故答案為:16+4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB 是⊙O 的直徑,CD 是弦,CDAB 于點(diǎn) E,點(diǎn) G 在直徑 DF 的延 長(zhǎng)線上,∠D=G=30°

1)求證:CG 是⊙O 的切線;

2)若 CD=6,求 GF 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過(guò)A2,0),B0-1)和C4,5)三點(diǎn)。

1)求二次函數(shù)的解析式;

2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

3)在同一坐標(biāo)系中畫(huà)出直線,并寫(xiě)出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD,AC,作DEAB,垂足為E,DEAC于點(diǎn)F.

(1)求證:AF=DF.

(2)求陰影部分的面積(結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩數(shù)學(xué)興趣小組測(cè)量山CD 的高度. 甲小組在地面A處測(cè)量,乙小組在上坡B處測(cè)量,AB=200 m. 甲小組測(cè)得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測(cè)得山頂D 的仰角為58°. 求山CD的高度(結(jié)果保留一位小數(shù)).參考數(shù)據(jù):,供選用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2+bx+ca、bc是常數(shù),a≠0)的對(duì)稱軸為直線x=﹣1

1b   ;(用含a的代數(shù)式表示)

2)當(dāng)a=﹣1時(shí),若關(guān)于x的方程ax2+bx+c0在﹣4x1的范圍內(nèi)有解,求c的取值范圍;

3)若拋物線過(guò)點(diǎn)(﹣1,﹣1),當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx22x+2m0

1)證明:不論m為何值時(shí),方程總有實(shí)數(shù)根;

2)當(dāng)m為何整數(shù)時(shí),方程有兩個(gè)不相等的整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的兩邊落在坐標(biāo)軸上,反比例函數(shù)y=的圖象在第一象限的分支過(guò)AB的中點(diǎn)DOB于點(diǎn)E,連接EC,若△OEC的面積為12,則k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:角的內(nèi)部一點(diǎn)到角兩邊的距離比為12,這個(gè)點(diǎn)與角的頂點(diǎn)所連線段稱為這個(gè)角的二分線.如圖1,點(diǎn)P為∠AOB內(nèi)一點(diǎn),PAOA于點(diǎn)A,PBOB于點(diǎn)B,且PB2PA,則線段OP是∠AOB的二分線.

1)圖1中,OP為∠AOB的二分線,PB4,PA2,且OA+OB8,求OP的長(zhǎng);

2)如圖2,正方形ABCD中,AB2,點(diǎn)EBC中點(diǎn),證明:DE是∠ADC的二分線;

3)如圖3,四邊形ABCD中,ABCD,∠ABC90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分別是∠DAB,∠ADC的二分線,證明:四邊形ABCD是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案