建造一個容積為,深為2m的長方體無蓋水池,池底和池壁的造價每平方米分別為120元和80元.

(1)設(shè)池底矩形的寬為xm,求水池的總造價y(元)與x的函數(shù)關(guān)系式;

(2)計算當(dāng)池底為正方形時,水池的總造價.

答案:
解析:

(1)因為長方體水池深2m,容積為,池底寬為x(m),則池底長為.又池底和池壁造價每平方米分別為120元和80元,所以

(2)當(dāng)池底為正方形時,即x=2時,y=4801280=1760,水池總造價為1760元.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料,并解答問題:
問題1:已知正數(shù),有下列命題若a+b=2,則
ab
≤1
若a+b=3,則
ab
3
2
;若a+b=6,則
ab
≤3
;
根據(jù)以上三個命題所提供的規(guī)律猜想:若a+b=9,則
ab
 
,
以上規(guī)律可表示為a+b
 
2
ab

問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元.
(1)設(shè)池長為x米,水池總造價為y(元),求y和x的函數(shù)關(guān)系式;
(2)應(yīng)用“問題1”題中的規(guī)律,求水池的最低造價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面的材料,并解答問題:
問題1:已知正數(shù),有下列命題數(shù)學(xué)公式;數(shù)學(xué)公式數(shù)學(xué)公式;
根據(jù)以上三個命題所提供的規(guī)律猜想:數(shù)學(xué)公式______,
以上規(guī)律可表示為a+b______數(shù)學(xué)公式
問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元.
(1)設(shè)池長為x米,水池總造價為y(元),求y和x的函數(shù)關(guān)系式;
(2)應(yīng)用“問題1”題中的規(guī)律,求水池的最低造價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料,并解答問題:
問題1:已知正數(shù),有下列命題若a+b=2,則
ab
≤1
若a+b=3,則
ab
3
2
若a+b=6,則
ab
≤3
;
根據(jù)以上三個命題所提供的規(guī)律猜想:若a+b=9,則
ab
______,
以上規(guī)律可表示為a+b______2
ab

問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元.
(1)設(shè)池長為x米,水池總造價為y(元),求y和x的函數(shù)關(guān)系式;
(2)應(yīng)用“問題1”題中的規(guī)律,求水池的最低造價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期中題 題型:解答題

閱讀下面的材料,并解答問題:
(1)問題1:已知正數(shù),有下列命題
若a+b=2,則;
若a+b=3,則;
若a+b=6,則
根據(jù)以上三個命題所提供的規(guī)律猜想:若a+b=9,則≤______;
以上規(guī)律可表示為:a+b______。
(2)問題2:建造一個容積為8立方米,深2米的長方形無蓋水池,池底和池壁的造價分別為每平方米120元和80元。
①設(shè)池長為x米,水池總造價為y(元),求y和x的函數(shù)關(guān)系式;
②利用“問題1”題中得出的規(guī)律和結(jié)論,求水池的最低造價。

查看答案和解析>>

同步練習(xí)冊答案