16.如圖,扇形OAB的圓心角為90°,點(diǎn)C,D是弧AB的三等分點(diǎn),半徑OC,OD分別與弦AB交于點(diǎn)E,F(xiàn),下列說法錯誤的是(  )
A.AE=EF=FBB.AC=CD=DBC.EC=FDD.∠DFB=75°

分析 由三角形內(nèi)角和定理求出∠OCD的度數(shù),根據(jù)三角形外角的性質(zhì)得出∠OEF及∠OFE的度數(shù),由此即可得出結(jié)論;根據(jù)三角形內(nèi)角和定理即可得出∠AEO的度數(shù);連接AC,BD,可得出CD=AE=BF,由②可知EF∥CD,所以EF<CD,故可得出結(jié)論.

解答 解:∵點(diǎn)C,D是弧AB的三等分點(diǎn),
∴AC=CD=DB,∴選項(xiàng)B正確;
∵OA=OB,
∴∠OAB=∠OBA=45°,
∵∠AOC=∠BOD=30°,
∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同理∠OFE=75°,
∴OE=OF,
∵OC=OD,
∴CE=DF,選項(xiàng)C正確;
連接AC,BD,
∵由選項(xiàng)C知,OC=OD,OE=OF,
∴EF∥CD,
∴EF<CD,
∵C,D是$\widehat{AB}$的三等分點(diǎn),
∴AC=CD=BD,
∵∠AOC=∠COD,OA=OC=OD,
∴△ACO≌△DCO.
∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,故選項(xiàng)D正確;
∠OCD=$\frac{180°-30°}{2}$=75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC.
故AC=AE,
同理,BF=BD.
又∵AC=CD=BD
∴CD=AE=BF≠EF,故選項(xiàng)A錯誤;
故選A.

點(diǎn)評 本題考查的是圓的綜合題,涉及到等腰三角形的性質(zhì)、全等三角形的判定定理等知識,難度適中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,甲、乙兩人分別從A(1,$\sqrt{3}$),B(6,0)兩點(diǎn)同時出發(fā),點(diǎn)O為坐標(biāo)原點(diǎn),甲沿AO方向,乙沿BO方向均以4km/h的速度行駛,th后,甲到達(dá)M點(diǎn),乙到達(dá)N點(diǎn).
(1)請說明甲、乙兩人到達(dá)O點(diǎn)前,MN與AB不可能平行;
(2)當(dāng)t為何值時,△OMN∽△OBA;
(3)甲、乙兩人之間的距離為MN的長,設(shè)s=MN2,直接寫出s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.不等式組$\left\{\begin{array}{l}{x≤2}\\{x>-1}\end{array}\right.$的解集在數(shù)軸上表示是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊(duì)承包地鐵1號線的某段修建工作,從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的3倍;若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作10天完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為15.6萬元,乙隊(duì)每天的施工費(fèi)用為18.4萬元,工程預(yù)算的施工費(fèi)用為500萬元,為縮短工期,擬安排甲、乙兩隊(duì)同時開工合作完成這項(xiàng)工程,那么工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需增加多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.己知a=5,|b|=8,且滿足a+b<0,則a-b的值為( 。
A.13B.-13C.3D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在所標(biāo)識的角中,互為同旁內(nèi)角的兩個角是( 。
A.∠1和∠3B.∠2和∠3C.∠1和∠4D.∠1和∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.下列判斷正確的是(  )
A.解分式必定產(chǎn)生增根
B.若分式方程的根是零,則必定是增根
C.解分式方程必須驗(yàn)根
D.x=3是方程$\frac{x}{x-3}$=2+$\frac{3}{x-3}$的根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.在$\frac{1}{x}$,$\frac{m+n}{m}$,$\frac{a^{2}}{5}$,-0.7xy+y3,$\frac{b-c}{5+a}$,$\frac{3{x}^{2}}{π}$中,分式有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF
(1)如圖1,求證:∠BED=∠AFD;
(2)求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=12,CF=5,求△DEF的面積.

查看答案和解析>>

同步練習(xí)冊答案