【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點A,B,C.現有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數根;④直線y=kx+c(k≠0)經過點A,C,當kx+c> ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是 ( )
A. ①②B. ①③C. ①③④D. ②③④
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上.點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O為圓心,1cm半徑作⊙O.點P與點D同時出發(fā),設它們的運動時間為t(單位:s) (0≤t≤).
(1)如圖1,連接DQ,若DQ平分∠BDC,則t的值為 s;
(2)如圖2,連接CM,設△CMQ的面積為S,求S關于t的函數關系式;
(3)在運動過程中,當t為何值時,⊙O與MN第一次相切?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為了調動員工的積極性,決定實行目標管理,即確定個人年利潤目標,根據目標完成的情況對員工進行適當的獎懲.為了確定這一目標,公司對上一年員工所創(chuàng)的年利潤進行了抽樣調查,并制成了如右的統(tǒng)計圖.
(1)求樣本容量,并補全條形統(tǒng)計圖;
(2)求樣本的眾數,中位數和平均數;
(3)如果想讓一半左右的員工都能達到目標,你認為個人年利潤定為多少合適?如果想確定一個較高的目標,個人年利潤又該怎樣定才合適?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,五邊形內部有若干個點,用這些點以及五邊形的頂點的頂點把原五邊形分割成一些三角形(互相不重疊):
內部有1個點 內部有2個點 內部有3個點
(1)填寫下表:
五邊形內點的個數 | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個數 | 5 | 7 | 9 | … |
(2)原五邊形能否被分割成2019個三角形?若能,求此時五邊形內部有多少個點?若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在女子800米耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數關系分別如圖中線段OA和折線OBCD所示.
(1)誰先到終點,當她到終點時,另一位同學離終點多少米?(請直接寫出答案)
(2)起跑后的60秒內誰領先?她在起跑后幾秒時被追及?請通過計算說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點D是BC邊的中點連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個條件刪去,此時AD仍然等于BC.
理由如下:延長AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時若能證得△ABC≌△CHA,
即可證得AH=BC,此時AD=BC,由此可見倍長過中點的線段是我們三角形證明中常用的方法.
(1)請你先證明△ABC≌△CHA,并用一句話總結題中的結論;
(2)現將圖1中△ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進行這樣的折疊(如圖4),此時線段BE、CF、EF還有這樣的關系式嗎?若有,請證明;若沒有,請舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點D旋轉(如圖5),射線DE、DF分別交AB、AC于點E、F,此時(2)中結論還成立嗎?請說明理由.圖4中的△DEF也這樣旋轉(如圖6),直接寫出上面的關系式是否成立.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=45°,∠C=30°,點D是邊BC上一點,連接AD,將線段AD繞點A逆時針旋轉90°,得到線段AE,連接DE.
(1)如圖①,當點E落在邊BA的延長線上時,∠EDC= 度(直接填空);
(2)如圖②,當點E落在邊AC上時,求證:BD=EC;
(3)當AB=2,且點E到AC的距離等于﹣1時,直接寫出tan∠CAE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請結合圖中所給信息解答下列問題:
(1)填空:本次共調查_____名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數是_____°;
(2)請直接補全條形統(tǒng)計圖;
(3)填空:扇形統(tǒng)計圖中,m的值為_____;
(4)該校共有500名學生,根據以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的約有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com