體育用品商店胡老板到體育商場批發(fā)籃球、足球、排球,商場老板對胡老板說:“籃球、足球、排球平均每只36元,籃球比排球每只多10元,排球比足球每只少8元”.
(1)請你幫胡老板求解出這三種球每只各多少元?
(2)胡老板用1060元批發(fā)回這三種球中的任意兩種共30只,你認為他可能是買哪兩種球各多少只?
(3)胡老板通常將每一種球各提價20元后,再進行打折銷售,其中排球、足球打八折,籃球打八五折,在(2)的情況下,為了獲得最大的利潤,他批發(fā)回的一定是哪兩種球各多少只?請通過計算說明理由.
解:(1)設(shè)籃球每只x元,足球y,排球z,得
+
+
=36;x-z=10;y-z=8;
解得x=40;y=38;z=30;
(2)假設(shè):①買的是籃球和足球,分別為a只和b只,
則a+b=30;40a+38b=1060;得a=-40,b=70,則不可能是這種情況;
同理若買的是足球和排球則求得可以是買足球20,排球10只;
若買的是籃球和排球則是籃球16只,排球14只;
(3)對兩種情況分別計算,若為足球和排球,即(38+20)×0.8×20+(30+20)0.8×10=1328(元);
若為籃球和排球,即(40+20)×0.85×16+(30+20)×0.8×14=1376(元),
∴買籃球16只,排球14只利潤最大.
分析:(1)分別設(shè)籃球每只x元,足球y,排球z,根據(jù)題意可得出三個二元一次不定方程,聯(lián)立求解即可得出答案.
(2)假設(shè):①買的是籃球和足球,分別為a只和b只,根據(jù)題意可得出兩個方程,求出解后可判斷出是否符合題意,進而再用同樣的方法判斷其他的符合題意的情況;
(3)分別對兩種情況下的利潤進行計算,然后比較利潤的大小即可得出答案.
點評:本題考查二元一次不定方程的應(yīng)用,題目的信息較多,在解答時要注意抓住等量關(guān)系,利用二元不定方程的知識進行解答.