在同一坐標平面內,下列4個函數(shù)①y=2(x+1)2-1,②y=2x2+3,③y=-2x2-1,④y=x2-1的圖象不可能由函數(shù)y=2x2+1的圖象通過平移變換、軸對稱變換得到的函數(shù)是    (填序號如“1”).
【答案】分析:利用二次函數(shù)的性質.
解答:解:前2個的二次項的系數(shù)的絕對值都為2,可由平移和軸對稱變換得到;第3個通過旋轉得到的,第4個二次項的系數(shù)為,不能通過上述變換得到.故答案是④.
點評:解決本題的關鍵是理解平移變換和軸對稱變換得到的二次函數(shù)的解析式中的二次項系數(shù)和原解析式中的二次項系數(shù)的絕對值相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某旅游勝地欲開發(fā)一座景觀山.從山的側面進行勘測,迎面山坡線ABC由同一平面內的兩段拋物線組成,其中AB所在的拋物線以A為頂點、開口向下,BC所在的拋物線以C為頂點、開口向上.以過山腳(點C)的水平線為x軸、過山頂(點A)的鉛垂線為y軸建立平面直角坐標系如圖(單位:百米).已知AB所在拋物線的解析式為y=-
1
4
x2+8,BC所在拋物線的解析式為y=
1
4
(x-8)2,且已知B(m,4).
(1)設P(x,y)是山坡線AB上任意一點,用y表示x,并求點B的坐標;
(2)從山頂開始、沿迎面山坡往山下鋪設觀景臺階.這種臺階每級的高度為20厘米,長度因坡度的大小而定,但不得小于20厘米,每級臺階的兩端點在坡面上(見圖).
①分別求出前三級臺階的長度(精確到厘米);
②這種臺階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點D)處恰好有一小塊平地,可以用來建造索道站.索道的起點選擇在山腳水平線上的點E處,OE=1600(米).假設索道DE可近似地看成一段以E為頂點、開口向上的拋物線,解析式為y=
1
28
(x-16)2精英家教網試求索道的最大懸空高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在同一平面直角坐標系內,將函數(shù)y=2x2+4x+1的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標是
(1,-2)
(1,-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•德陽)在同一平面直角坐標系內,將函數(shù)y=2x2+4x+1的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川德陽卷)數(shù)學(解析版) 題型:選擇題

在同一平面直角坐標系內,將函數(shù)的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標是【    】

A.(,1)    B.(1,)     C.(2,)     D.(1,

 

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省嘉興市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•嘉興)某旅游勝地欲開發(fā)一座景觀山.從山的側面進行勘測,迎面山坡線ABC由同一平面內的兩段拋物線組成,其中AB所在的拋物線以A為頂點、開口向下,BC所在的拋物線以C為頂點、開口向上.以過山腳(點C)的水平線為x軸、過山頂(點A)的鉛垂線為y軸建立平面直角坐標系如圖(單位:百米).已知AB所在拋物線的解析式為y=-x2+8,BC所在拋物線的解析式為y=(x-8)2,且已知B(m,4).
(1)設P(x,y)是山坡線AB上任意一點,用y表示x,并求點B的坐標;
(2)從山頂開始、沿迎面山坡往山下鋪設觀景臺階.這種臺階每級的高度為20厘米,長度因坡度的大小而定,但不得小于20厘米,每級臺階的兩端點在坡面上(見圖).
①分別求出前三級臺階的長度(精確到厘米);
②這種臺階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點D)處恰好有一小塊平地,可以用來建造索道站.索道的起點選擇在山腳水平線上的點E處,OE=1600(米).假設索道DE可近似地看成一段以E為頂點、開口向上的拋物線,解析式為y=(x-16)2.試求索道的最大懸空高度.

查看答案和解析>>

同步練習冊答案