已知⊙O的直徑等于12cm,圓心O到直線l的距離為5cm,則直線l與⊙O的交點(diǎn)個(gè)數(shù)為 .
2
考點(diǎn): 直線與圓的位置關(guān)系.
分析: 首先求得該圓的半徑,再根據(jù)直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行分析判斷.若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,
進(jìn)而利用直線與圓相交有兩個(gè)交點(diǎn),相切有一個(gè)交點(diǎn),相離沒(méi)有交點(diǎn),即可得出答案.
解答: 解:根據(jù)題意,得該圓的半徑是6 cm,即大于圓心到直線的距離5 cm,則直線和圓相交,
故直線l與⊙O的交點(diǎn)個(gè)數(shù)為2.
故答案為:2
點(diǎn)評(píng): 此題主要考查了直線與圓的位置關(guān)系,這里要特別注意12是圓的直徑;掌握直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,某小區(qū)規(guī)劃在一個(gè)長(zhǎng)30m、寬20m的長(zhǎng)方形ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分種花草.要使每一塊花草的面積都為78m2,那么通道的寬應(yīng)設(shè)計(jì)成多少m?設(shè)通道的寬為xm,由題意列得方程 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
楚天汽車銷售公司5月份銷售某種型號(hào)汽車,當(dāng)月該型號(hào)汽車的進(jìn)價(jià)為30萬(wàn)元/輛,若當(dāng)月銷售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬(wàn)元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車的銷售價(jià)為32萬(wàn)元/輛,公司計(jì)劃當(dāng)月銷售利潤(rùn)25萬(wàn)元,那么該月需售出多少輛汽車?(注:銷售利潤(rùn)=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,兩個(gè)同心圓的直徑分別為6cm和10cm,大圓的一條弦AB與小圓相切,則弦AB的長(zhǎng)為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若一個(gè)一元二次方程的兩個(gè)根分別是﹣3、2,請(qǐng)寫(xiě)出一個(gè)符合題意的一元二次方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一元二次方程x2+2x+2k﹣1=0,當(dāng)k為何值時(shí),此方程有兩個(gè)相等的實(shí)數(shù)根?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)給出的新定義,解答問(wèn)題。
定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.如圖1所示,BD、 CE 就是這個(gè)三角形的三分線。
(1) 在圖1中,若AB=2,CD= 。
(2) 請(qǐng)你在圖2中用兩種不同的方法畫(huà)出頂角為36°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)
(3)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B=,請(qǐng)畫(huà)出△ABC的三分線,并求出兩條三分線的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com