【題目】在矩形ABCD中,點(diǎn)EBC上,AEADDFAE,垂足為F

1)求證:DFAB;

2)若FAD30°,且AB4,求AD

【答案】1)見解析;(2AD8

【解析】

1)利用“AAS”ADF≌△EAB即可得;

2)由∠ADF+FDC=90°、∠DAF+ADF=90°得∠FDC=DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.

1)證明:在矩形ABCD中,

ADBC,∠B90°,

∴∠AEB=∠DAF,

又∵DFAE,

∴∠DFA90°,

∴∠DFA=∠B,

在△ADF和△EAB中,

,

∴△ADF≌△EABAAS),

DFAB

2)∵∠ADF+FDC=90°,DAF+ADF=90°,

∴∠FDC=DAF=30°,

AD=2DF,

DF=AB,

AD=2AB=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ACBC3,AB6,點(diǎn)E從點(diǎn)B沿著射線BA以每秒3個(gè)單位的速度運(yùn)動,過點(diǎn)EBC的平行線交∠ACB的外角平分線CF于點(diǎn)F

1)求證:四邊形BCFE是平行四邊形;

2)當(dāng)點(diǎn)E是邊AB的中點(diǎn)時(shí),連結(jié)AF,試判斷四邊形AECF的形狀,并說明理由;

3)設(shè)運(yùn)動時(shí)間為t秒,是否存在t的值,使得以△EFC的其中兩邊為邊所構(gòu)造的平行四邊形恰好是菱形?若存在,請求出t的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,二次函數(shù)yx22x3的部分圖象與x軸交于點(diǎn)A,BAB的左邊),與y軸交于點(diǎn)C,連接BC,D為頂點(diǎn).

1)求∠OBC的度數(shù);

2)在x軸下方的拋物線上是否存在一點(diǎn)Q,使△ABQ的面積等于5?如存在,求Q點(diǎn)的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1:在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系,小吳同學(xué)探究此問題的思路是:將BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°AED處,點(diǎn)B、C分別落在點(diǎn)A、E處(如圖2),易證點(diǎn)C、A、E在同一條直線上,并且CDE是等腰直角三角形,所以CE=

CD,從而得出結(jié)論:AC+BC=CD.

1)簡單應(yīng)用:在圖1中,若AC=,BC=2,則CD= .

2)拓展規(guī)律,如圖3,∠ACB=ADB=90°AD=BD,AC=m,BC=nmn),求CD的長(用含m,n的代數(shù)式表示)

3)如圖4,∠ACB=90°,AC=BC,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,點(diǎn)QAE的中點(diǎn),直接寫出線段PQAC的數(shù)量關(guān)系是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,同學(xué)們的學(xué)習(xí)習(xí)慣也有了改變,一些同學(xué)在做題遇到困難時(shí),喜歡上網(wǎng)查找答案.針對這個(gè)問題,某校調(diào)查了部分學(xué)生對這種做法的意見(分為:贊成、無所謂、反對),并將調(diào)查結(jié)果繪制成圖1和圖2兩個(gè)不完整的統(tǒng)計(jì)圖.

請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將圖1補(bǔ)充完整;

(3)求出扇形統(tǒng)計(jì)圖中持反對意見的學(xué)生所在扇形的圓心角的度數(shù);

(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該校1500名學(xué)生中有多少名學(xué)生持無所謂意見.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A、BC,請?jiān)诰W(wǎng)格圖中進(jìn)行下列操作(以下結(jié)果保留根號).

1)利用網(wǎng)格作出該圓弧所在圓的圓心D點(diǎn)的位置,并寫出D點(diǎn)的坐標(biāo)為  ;

2)連接AD、CD,則⊙D的半徑為  ,∠ADC的度數(shù)為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對于任何實(shí)數(shù)x

①∵

②∵

模仿上述方法

求證:

(1)對于任何實(shí)數(shù)x,均有

(2)不論x為何實(shí)數(shù),單項(xiàng)式的值總大于的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓形紙片⊙O半徑為,先在其內(nèi)剪出2個(gè)邊長相等的最大正方形,再在剩余部分剪出2個(gè)邊長相等的最大正方形,則第二次剪出的正方形的邊長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,A(2,1),B(0,5),點(diǎn)C在第二象限,則點(diǎn)C的坐標(biāo)是______

查看答案和解析>>

同步練習(xí)冊答案