【題目】在△ABC中,AD平分∠BACBDAD,垂足為D,過(guò)DDEAC,交ABE,若BD=7,AD=24,求線段DE的長(zhǎng).

【答案】12.5

【解析】

利用AD平分得到∠BAD=CAD,再由DEAC證出∠ADE=CAD,得到AE=DE;由BDAD得到△ABD是直角三角形,利用其它兩個(gè)銳角互余求得BE=DE,從而得到DE=AE=BE,利用勾股定理求得AB即可得到DE的長(zhǎng)度.

解:∵AD平分∠BAC,

∴∠BAD=∠CAD,

DEAC,

∴∠CAD=∠ADE,

∴∠BAD=∠ADE

AEDE,

ADDB

∴∠ADB90°,

∴∠EAD+ABD90°,∠ADE+BDE=∠ADB90°,

∴∠ABD=∠BDE,

DEBE,

∵在RtABD中,∠ADB=90°

AB=ADBD,∴AB=25

DEBEAEAB12.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在解方程x2x+1=0的時(shí)候,奇奇的方法別出心裁:

解:移項(xiàng)得:x2+1=x,變形得:x2+1=x=(+)x①,由于原方程中x≠0,故可以在①的兩邊同時(shí)除以x得:x+=+解得:x1=,x2=

這是利用對(duì)稱式的典型范例,下面的問(wèn)題需要你來(lái)完成:

(1)直接寫出方程x﹣=b﹣的解:

(2)由(1)的結(jié)論解關(guān)于x的方程:x﹣=a﹣(a≠2)

(3)模仿奇奇的解法,解方程:x2x+4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:有三張正面寫有數(shù)字-1,0,1的卡片片它們背面完全相同,將這三張卡片背面朝上洗勻后,其中一個(gè)同學(xué)隨機(jī)抽取一張,將其正面的數(shù)字作為p的值,然后將卡片放回洗勻,另一個(gè)同學(xué)再?gòu)倪@三張卡片中隨機(jī)抽取一張,將其正面的數(shù)字作為q的值,兩次結(jié)果記為(p,q

1)請(qǐng)用樹(shù)狀圖或列表法表示(pq)所有可能出現(xiàn)的結(jié)果;

2)求滿足關(guān)于x的方程x2+px+q=0沒(méi)有實(shí)數(shù)根的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連接AD、CF,ADCF交于點(diǎn)M,ABCF交于點(diǎn)H.

(1)求證:△ABD≌△FBC;

(2)已知AD=6,求四邊形AFDC的面積;

(3)在△ABC中,設(shè)BC=a,AC=b,AB=c,當(dāng)∠ACB≠90°時(shí),c≠a+b.在任意△ABC中,c=a+b+k.a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結(jié)論即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)學(xué)校組織學(xué)生參加綜合實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如下表所示:

第1天

第2天

第3天

第4天

售價(jià)x(元/雙)

150

200

250

300

銷售量y(雙)

40

30

24

20

(1)觀察表中數(shù)據(jù),xy滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;

(2)若商場(chǎng)計(jì)劃每天的銷售利潤(rùn)為3000元,則其單價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>

甲:9,10,8,5,7,8,10,8,8,7;

乙:5,7,8,7,8,9,7,9,10,10;

丙:7,6,8,5,4,7,6,3,9,5.

(1)根據(jù)以上數(shù)據(jù)求出表中a,b,c的值;

平均數(shù)

中位數(shù)

方差

8

8

b

a

8

2.2

6

c

3

(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由;

(3)比賽時(shí)三人依次出場(chǎng),順序由抽簽方式?jīng)Q定,用列舉法求甲、乙相鄰出場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=B=C=D=90°,AD=BC=6, AB=CD=10.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△ADB為直角三角形時(shí),DE的長(zhǎng)為( 。

A.28B.18C.2D.218

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).

(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將摸出黑球記為事件A,請(qǐng)完成下列表格;

(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案