(2007•荊州)如圖,在等腰梯形ABCD中,AD∥BC,過C作CE∥AB,P為梯形ABCD內(nèi)一點,連接BP并延長交CD于F,交CE于E,再連接PC,已知BP=PC,則下列結(jié)論中錯誤的是( )

A.∠1=∠2
B.∠2=∠E
C.△PFC∽△PCE
D.△EFC∽△ECB
【答案】分析:此題可以利用等腰梯形的性質(zhì)及相似三角形的判定等知識點,采用逐個分析法確定最后答案.
解答:解:∵ABCD是等腰梯形,
∴∠ABC=∠DCB,
∵BP=CP,
∴∠PBC=∠PCB,
∴∠1=∠2(A正確),
∵CE∥AB,
∴∠1=∠E,
∴∠2=∠E(B正確),
∵∠P=∠P,∠2=∠E,
∴△PFC∽△PCE(C正確).
故選D.
點評:本題主要考查了等腰梯形及平行線的性質(zhì),相似三角形的判定等內(nèi)容.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點,過D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過C點,與x軸分別交于A、B兩點.若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省溫州市龍港三中一模試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數(shù)關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省漳州市高中自主招生四校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數(shù)關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省荊州市中考數(shù)學試卷(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點,過D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過C點,與x軸分別交于A、B兩點.若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省荊門市中考數(shù)學試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點P是OA邊上的動點(與點O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當?shù)狞cE,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設P(x,0),E(0,y),求y關于x的函數(shù)關系式,并求y的最大值;
(2)如圖2,若翻折后點D落在BC邊上,求過點P、B、E的拋物線的函數(shù)關系式;
(3)在(2)的情況下,在該拋物線上是否存在點Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標.

查看答案和解析>>

同步練習冊答案