如圖,在⊙C的內接△AOB中,AB=AO=4,tan∠AOB=數(shù)學公式,拋物線y=a(x-2)2+m(a≠0)經(jīng)過點A(4,0)與點(-2,6).
(1)求拋物線的解析式;
(2)直線m與⊙C相切于點A,交y軸于點D,動點P在線段OB上,從點O出發(fā)向點B運動,同時動點Q在線段DA上,從點D出發(fā)向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長.當PQ⊥AD時,求運動時間t的值.

解:(1)將點A(4,0)和點(-2,6)的坐標代入y=a(x-2)2+m中,得方程組,

解得
故拋物線的解析式為y=x2-2x.

(2)如圖所示,連接AC交OB于E.作OF⊥AD于F,
∵直線m切⊙C于點A,
∴AC⊥m.
∵弦AB=AO,
=
∴AC⊥OB,
∴m∥OB.
∴∠OAD=∠AOB.
∵OA=4,tan∠AOB=,
∴OD=OA•tan∠OAD=4×=3.
則OF=OA•sin∠OAD=4×=2.4.
t秒時,OP=t,DQ=2t,
若PQ⊥AD,則 FQ=OP=t.DF=DQ-FQ=t.
∴△ODF中,t=DF==1.8(秒).
分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解析式即可;
(2)連接AC交OB于E,作OF⊥AD于F,得出m∥OB,進而求出OD,OF的長,進而利用勾股定理得出DF的長.
點評:此題主要考查了二次函數(shù)的綜合應用以及垂徑定理的推論和勾股定理等知識,根據(jù)切線的性質以及銳角三角函數(shù)關系得出OF的長是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、已知:如圖,在⊙O的內接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內接△ABC中,AB=AC,D是⊙O上一點,AD的延長線交BC的延長線于點P.
(1)求證:AB2=AD•AP;
(2)若⊙O的直徑為25,AB=20,AD=15,求PC和DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內接四邊形ABCD中,AB+AD=12,對角線AC是⊙O的直徑,AE⊥BD,垂足為E,AE=3.設⊙O的半徑為y,AB的長為x.
(1)求y與x函數(shù)關系式;
(2)當AB的長等于多少時,⊙O的面積最大,并求出⊙O的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內接△ABC中,∠ABC=30°,AC的延長線與過點B的⊙O的切線相交于點D,若⊙O的半徑OC=1,BD∥OC,則CD的長為( 。
A、1+
3
3
B、
2
3
3
C、
3
3
D、
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O的內接四邊形ABCD中,∠BOD=90°,則∠A=
45
45
°,∠BCD=
135
135
°.

查看答案和解析>>

同步練習冊答案