(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個(gè)問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個(gè)問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個(gè)三角形,再計(jì)算其面積即可.他利用圖形變換解決了這個(gè)問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于
2
2

請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個(gè)三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3
分析:由等腰直角三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)知,△OEB與△BOC是等底同高的兩個(gè)三角形;
①將△DBI和△FCH平移即可得到如圖所示的△EGM.
②如圖2,根據(jù)正方形的性質(zhì)推知△ABE和△ACG都是等腰直角三角形,則根據(jù)旋轉(zhuǎn)的性質(zhì)推知S△AEG=S△AEM=S△AMG=S△ABC=1,所以易求△EGM的面積.
解答:解:∵△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°,
∴OD=OC,OA=OB.
又∵∠BOE+∠AOE=90°,∠AOD+∠AOE=90°,
∴∠AOD=∠BOE,
∴△OBE≌△OAD,
∴△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形.
∵△OEB與△BOC是等底同高的兩個(gè)三角形,
∴S△OEB=S△BOC=1,
∴S△BCE=S△OEB+S△BOC=2.

①(答案不唯一):如圖1,
以EG、FH、ID的長度為三邊長的一個(gè)三角形是△EGM.

②如圖2,∵四邊形AEDB和四邊形ACFG都是正方形,
∴△ABE和△ACG都是等腰直角三角形,
∴S△AEG=S△AEM=S△AMG=S△ABC=1,
∴S△EGM=S△AEG+S△AEM+S△AMG=3,即以EG、FH、ID的長度為三邊長的三角形的面積等于3.
故答案是:2,3.
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì)、三角形的面積、等腰三角形的性質(zhì)以及正方形的性質(zhì).注意平移、旋轉(zhuǎn)的性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•博野縣模擬)如圖,在平面直角坐標(biāo)系中,直線AC:y=
4
3
x+8
與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c過點(diǎn)A、點(diǎn)C,且與x軸的另一交點(diǎn)為B(x0,0),其中x0>0,又點(diǎn)P是拋物線的對稱軸l上一動點(diǎn).
(1)求點(diǎn)A的坐標(biāo),并在圖1中的l上找一點(diǎn)P0,使P0到點(diǎn)A與點(diǎn)C的距離之和最;
(2)若△PAC周長的最小值為10+2
41
,求拋物線的解析式及頂點(diǎn)N的坐標(biāo);
(3)如圖2,在線段CO上有一動點(diǎn)M以每秒2個(gè)單位的速度從點(diǎn)C向點(diǎn)O移動(M不與端點(diǎn)C、O重合),過點(diǎn)M作MH∥CB交x軸于點(diǎn)H,設(shè)M移動的時(shí)間為t秒,試把△P0HM的面積S表示成時(shí)間t的函數(shù),當(dāng)t為何值時(shí),S有最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•博野縣模擬)今年“五一”小長假期間,我市各旅游景點(diǎn)共接待游客約132000人次,將132000用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•博野縣模擬)若拋物線y=x2-2x+m的最低點(diǎn)的縱坐標(biāo)為n,則m-n的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•博野縣模擬)在數(shù)學(xué)校本活動課上,張老師設(shè)計(jì)了一個(gè)游戲,讓電動娃娃在邊長為1的正方形的四個(gè)頂點(diǎn)上依次跳動.規(guī)定:從頂點(diǎn)A出發(fā),每跳動一步的長均為1.第一次順時(shí)針方向跳1步到達(dá)頂點(diǎn)D,第二次逆時(shí)針方向跳2步到達(dá)頂點(diǎn)B,第三次順時(shí)針方向跳3步到達(dá)頂點(diǎn)C,第四次逆時(shí)針方向跳4步到達(dá)頂點(diǎn)C,…,以此類推,跳動第10次到達(dá)的頂點(diǎn)是
B
B
,跳動第2012次到達(dá)的頂點(diǎn)是
C
C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•博野縣模擬)在一個(gè)不透明的盒子里,裝有三個(gè)分別標(biāo)有數(shù)字1,2,3的小球它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)寫出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=
4x
 的圖象上的概率.

查看答案和解析>>

同步練習(xí)冊答案