已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將x噸保鮮品一次性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預訂.
現(xiàn)有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標準表
(1)汽車的速度為______千米/時,火車的速度為______千米/時:
(2)設每天用汽車和火車運輸?shù)目傎M用分別為y(元)和y(元),分別求y、y與x的函數(shù)關系式(不必寫出x的取值范圍),當x為何值時,y>y(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應提前為下周預定哪種運輸工具,才能使每天的運輸總費用較?
(1)根據(jù)圖表上點的坐標為:(2,120),(2,200),
∴汽車的速度為 60千米/時,火車的速度為 100千米/時,
故答案為:60,100;

(2)依據(jù)題意得出:
y =240×2x+
240
60
×5x+200,
=500x+200;
y=240×1.6x+
240
100
×5x+2280,
=396x+2280.
若y >y,得出500x+200>396x+2280.
∴x>20;

(3)上周貨運量
.
x
=(17+20+19+22+22+23+24)÷7=21>20,
從平均數(shù)分析,建議預定火車費用較。
從折線圖走勢分析,上周貨運量周四(含周四)后大于20且呈上升趨勢,建議預訂火車費用較。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD在平面直角坐標系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=
4
5

(1)求直線AB的解析式;
(2)若點H的坐標為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當t′=
7
2
秒時,點G停止運動,此時直線GH與y軸交于點N.另一動點P開始從B出發(fā),以1個單位/秒的速度沿著梯形的各邊運動一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點P可以與梯形的各頂點重合).設動點P的運動時間為t秒,點M為直線HE上任意一點(點M不與點H重合),在點P的整個運動過程中,求出所有能使∠PHM與∠HNE相等的t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系xoy中,已知兩點O1(3,0)、B(-2,0),⊙O1與x軸交于原點O和點A,E是y軸上的一個動點,設點E的坐標為(0,m).
(1)當點O1到直線BE的距離等于3時,求直線BE的解析式;
(2)當點E在y軸上移動時,直線BE與⊙O1有哪幾種位置關系;直接寫出每種位置關系時的m的取值范圍;
(3)若在第(1)題中,設∠EBA=α,求sin2α-2sinα•cosα的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是一個運算流程.
(1)分別計算x=2,-2時y的值.
(2)若需要經(jīng)過兩次運算,才能運算出y,求x的取值范圍.
(3)若無論運算多少次,都無法運算出y,試探究x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將一塊a(cm)×b(cm)×c(cm)(a<b<c)的長方體鐵塊(如圖1所示)放入一長方體水槽(如圖2所示)內(nèi),鐵塊與水槽四壁不接觸.現(xiàn)向水槽內(nèi)勻速注水,直至注滿水槽為止.因為鐵塊在水槽內(nèi)有三種不同的放置方式,所以水槽內(nèi)的水深h(cm)與注水時間t(s)的函數(shù)關系用圖象法來反映其全過程有三個不同的圖象,如圖3、4、5所示(說明:三次注水速度相同).

(1)根據(jù)圖象填空
①水槽的深度是______cm,a=______,b=______;
②t1與t2的大小關系是t1______t2,并求出t1、t2的值;
(2)求水槽內(nèi)的底面積和注水速度;
(3)求c的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

線段y=-
1
2
x+a
(1≤x≤3),當a的值由-1增加到2時,該線段運動所經(jīng)過的平面區(qū)域的面積為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l1、l2、l3…ln同垂直于x軸,垂足依次為(1,0)(2,0)(3,0)(4,0)…(n,0)函數(shù)y=x分別相交于A1、A2、A3…A;函數(shù)y=2x分別與直線l1、l2、l3…ln相交于B1、B2、B3…Bn,如果△A1OB1的面積為S1,四邊形A1A2B2B1的面積記為S2,四邊形A2A3B3B2的面積記為S3…,四邊形An-1AnBnBn-1的面積記為Sn,那么S1=______,S1+S2+S3+…+S10=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)y=-
3
3
x+1與x軸,y軸分別交于點A,B.以線段AB為邊在第一象限內(nèi)作正方形ABCD(如圖).在第二象限內(nèi)有一點P(a,
1
2
),滿足S△ABP=S正方形ABCD,則a=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)的關系如圖所示.請根據(jù)圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,從點燃到燃盡所用的時間分別是______;
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關系式;
(3)當x為何值時,甲、乙兩根蠟燭在燃燒過程中的高度相等.

查看答案和解析>>

同步練習冊答案